Visible to the public Biblio

Filters: Keyword is Lead  [Clear All Filters]
2023-05-11
Zhang, Zhi Jin, Bloch, Matthieu, Saeedifard, Maryam.  2022.  Load Redistribution Attacks in Multi-Terminal DC Grids. 2022 IEEE Energy Conversion Congress and Exposition (ECCE). :1–7.
The modernization of legacy power grids relies on the prevalence of information technology (IT). While the benefits are multi-fold and include increased reliability, more accurate monitoring, etc., the reliance on IT increases the attack surface of power grids by making them vulnerable to cyber-attacks. One of the modernization paths is the emergence of multi-terminal dc systems that offer numerous advantages over traditional ac systems. Therefore, cyber-security issues surrounding dc networks need to be investigated. Contributing to this effort, a class of false data injection attacks, called load redistribution (LR) attacks, that targets dc grids is proposed. These attacks aim to compromise the system load data and lead the system operator to dispatch incorrect power flow commands that lead to adverse consequences. Although similar attacks have been recently studied for ac systems, their feasibility in the converter-based dc grids has yet to be demonstrated. Such an attack assessment is necessary because the dc grids have a much smaller control timescale and are more dependent on IT than their traditional ac counterparts. Hence, this work formulates and evaluates dc grid LR attacks by incorporating voltage-sourced converter (VSC) control strategies that appropriately delineate dc system operations. The proposed attack strategy is solved with Gurobi, and the results show that both control and system conditions can affect the success of an LR attack.
ISSN: 2329-3748
2023-02-17
Chanumolu, Kiran Kumar, Ramachandran, Nandhakumar.  2022.  A Study on Various Intrusion Detection Models for Network Coding Enabled Mobile Small Cells. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). :963–970.
Mobile small cells that are enabled with Network Coding (NC) are seen as a potentially useful technique for Fifth Generation (5G) networks, since they can cover an entire city and can be put up on demand anywhere, any time, and on any device. Despite numerous advantages, significant security issues arise as a result of the fact that the NC-enabled mobile small cells are vulnerable to attacks. Intrusions are a severe security threat that exploits the inherent vulnerabilities of NC. In order to make NC-enabled mobile small cells to realize their full potential, it is essential to implement intrusion detection systems. When compared to homomorphic signature or hashing systems, homomorphic message authentication codes (MACs) provide safe network coding techniques with relatively smaller overheads. A number of research studies have been conducted with the goal of developing mobile small cells that are enabled with secure network coding and coming up with integrity protocols that are appropriate for such crowded situations. However, the intermediate nodes alter packets while they are in transit and hence the integrity of the data cannot be confirmed by using MACs and checksums. This research study has analyzed numerous intrusion detection models for NC enabled small cells. This research helps the scholars to get a brief idea about various intrusion detection models.
2023-01-20
Choudhary, Sachin, Kumar, Abhimanyu, Kumar, Krishan.  2022.  An Efficient Key Agreement Protocol for Smart Grid communication. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). :1—5.
Integration of technology with power grid emerged Smart grid. The advancement of power grid into smart grid faces some security issues like message mod-ification attacks, message injection attacks etc. If these issues are correctly not addressed, then the performance of the smart grid is degraded. Smart grid has bidirectional communication among the smart grid entities. The flow of user energy consumption information between all smart grid entities may lead the user privacy violation. Smart grids have various components but service providers and smart meters are the main components. Smart meters have sensing and communication functionality, while service providers have control and communication functionality. There are many privacy preservation schemes proposed that ensure the cus-tomer's privacy in the smart grid. To preserve the customer's data privacy and communication, authentication and key agreement schemes are required between the smart meter and the service provider. This paper proposes an efficient key agreement protocol to handle several security challenges in smart grid. The proposed protocol is tested against the various security attributes necessary for a key establishment protocol and found safe. Further the performance of the proposed work is compared with several others existing work for smart grid application and it has been observed that the proposed protocol performs significantly better than the existing protocols available in the literature.
2022-07-12
Wang, Peiran, Sun, Yuqiang, Huang, Cheng, Du, Yutong, Liang, Genpei, Long, Gang.  2021.  MineDetector: JavaScript Browser-side Cryptomining Detection using Static Methods. 2021 IEEE 24th International Conference on Computational Science and Engineering (CSE). :87—93.
Because of the rise of the Monroe coin, many JavaScript files with embedded malicious code are used to mine cryptocurrency using the computing power of the browser client. This kind of script does not have any obvious behaviors when it is running, so it is difficult for common users to witness them easily. This feature could lead the browser side cryptocurrency mining abused without the user’s permission. Traditional browser security strategies focus on information disclosure and malicious code execution, but not suitable for such scenes. Thus, we present a novel detection method named MineDetector using a machine learning algorithm and static features for automatically detecting browser-side cryptojacking scripts on the websites. MineDetector extracts five static feature groups available from the abstract syntax tree and text of codes and combines them using the machine learning method to build a powerful cryptojacking classifier. In the real experiment, MineDetector achieves the accuracy of 99.41% and the recall of 93.55% and has better performance in time comparing with present dynamic methods. We also made our work user-friendly by developing a browser extension that is click-to-run on the Chrome browser.
2022-02-07
Todorov, Z., Efnusheva, D., Nikolic, T..  2021.  FPGA Implementation of Computer Network Security Protection with Machine Learning. 2021 IEEE 32nd International Conference on Microelectronics (MIEL). :263–266.
Network intrusion detection systems (NIDS) are widely used solutions targeting the security of any network device connected to the Internet and are taking the lead in the battle against intruders. This paper addresses the network security issues by implementing a hardware-based NIDS solution with a Naïve Bayes machine learning (ML) algorithm for classification using NSL Knowledge Discovery in Databases (KDD) dataset. The proposed FPGA implementation of the Naive Bayes classifier focuses on low latency and provides intrusion detection in just 240ns, with accuracy/precision of 70/97%, occupying 1 % of the Virtex7 VC709 FPGA chip area.
2021-02-01
Lee, J., Abe, G., Sato, K., Itoh, M..  2020.  Impacts of System Transparency and System Failure on Driver Trust During Partially Automated Driving. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1–3.
The objective of this study is to explore changes of trust by a situation where drivers need to intervene. Trust in automation is a key determinant for appropriate interaction between drivers and the system. System transparency and types of system failure influence shaping trust in a supervisory control. Subjective ratings of trust were collected to examine the impact of two factors: system transparency (Detailed vs. Less) and system failure (by Limits vs. Malfunction) in a driving simulator study in which drivers experienced a partially automated vehicle. We examined trust ratings at three points: before and after driver intervention in the automated vehicle, and after subsequent experience of flawless automated driving. Our result found that system transparency did not have significant impacts on trust change from before to after the intervention. System-malfunction led trust reduction compared to those of before the intervention, whilst system-limits did not influence trust. The subsequent experience recovered decreased trust, in addition, when the system-limit occurred to drivers who have detailed information about the system, trust prompted in spite of the intervention. The present finding has implications for automation design to achieve the appropriate level of trust.
2018-03-19
Bulusu, S. T., Laborde, R., Wazan, A. S., Barrere, F., Benzekri, A..  2017.  Describing Advanced Persistent Threats Using a Multi-Agent System Approach. 2017 1st Cyber Security in Networking Conference (CSNet). :1–3.

Advanced Persistent Threats are increasingly becoming one of the major concerns to many industries and organizations. Currently, there exists numerous articles and industrial reports describing various case studies of recent notable Advanced Persistent Threat attacks. However, these documents are expressed in natural language. This limits the efficient reusability of the threat intelligence information due to ambiguous nature of the natural language. In this article, we propose a model to formally represent Advanced Persistent Threats as multi-agent systems. Our model is inspired by the concepts of agent-oriented social modelling approaches, generally used for software security requirement analysis.

2017-11-20
Aqel, S., Aarab, A., Sabri, M. A..  2016.  Shadow detection and removal for traffic sequences. 2016 International Conference on Electrical and Information Technologies (ICEIT). :168–173.

This paper address the problem of shadow detection and removal in traffic vision analysis. Basically, the presence of the shadow in the traffic sequences is imminent, and therefore leads to errors at segmentation stage and often misclassified as an object region or as a moving object. This paper presents a shadow removal method, based on both color and texture features, aiming to contribute to retrieve efficiently the moving objects whose detection are usually under the influence of cast-shadows. Additionally, in order to get a shadow-free foreground segmentation image, a morphology reconstruction algorithm is used to recover the foreground disturbed by shadow removal. Once shadows are detected, an automatic shadow removal model is proposed based on the information retrieved from the histogram shape. Experimental results on a real traffic sequence is presented to test the proposed approach and to validate the algorithm's performance.

2017-02-27
Njenga, K., Ndlovu, S..  2015.  Mobile banking and information security risks: Demand-side predilections of South African lead-users. 2015 Second International Conference on Information Security and Cyber Forensics (InfoSec). :86–92.

South Africa's lead-users predilections to tinker and innovate mobile banking services is driven by various constructs. Advanced technologies have made mobile banking services easy to use, attractive and beneficial. While this is welcome news to many, there are concerns that when lead-users tinker with these services, information security risks are exacerbated. The aim of this article is to present an insightful understanding of the demand-side predilections of South Africa's lead-users in such contexts. We assimilate the theories of Usage Control, (UCON), the Theory of Technology Acceptance Model (TAM), and the Theory of Perceived Risk (TPP) to explain predilections over technology. We demonstrate that constructs derived from these theories can explain the general demand-side predilection to tinker with mobile banking services. A quantitative approach was used to test this. From a sample of South African banking lead-users operating in Gauteng province of South Africa, data was collected and analysed with the help of a software package. We found unexpectedly that, lead-users predilections to tinker with mobile banking services was inhibited by perceived risk. Moreover, male lead-users were more domineering in the tinkering process than female lead-users. The implication for this is discussed and explained in the main body of work.

2015-05-05
Sindhu, S.M., Kanchana, R..  2014.  Security solutions for Web Service attacks in a dynamic composition scenario. Advanced Communication Control and Computing Technologies (ICACCCT), 2014 International Conference on. :624-628.

Web Services can be invoked from anywhere through internet without having enough knowledge about the implementation details. In some cases, single service cannot accomplish user needs. One or more services must be composed which together satisfy the user needs. Therefore, security is the most important concern not only at single service level but also at composition level. Several attacks are possible on SOAP messages communicated among Web Services because of their standardized interfaces. Examples of Web Service attacks are oversize payload, SOAPAction spoofing, XML injection, WS-Addressing spoofing, etc. Most of the existing works provide solution to ensure basic security features of Web Services such as confidentiality, integrity, authentication, authorization, and non-repudiation. Very few of the existing works provide solutions such as schema validation and schema hardening for attacks on Web Services. But these solutions do not address and provide attack specific solutions for SOAP messages communicated between Web Service. Hence, it is proposed to provide solutions for two of the prevailing Web Service attacks. Since new types of Web Service attacks are evolving over time, the proposed security solutions are implemented as APIs that are pluggable in any server where the Web Service is deployed.
 

2015-05-04
Novak, E., Qun Li.  2014.  Near-pri: Private, proximity based location sharing. INFOCOM, 2014 Proceedings IEEE. :37-45.

As the ubiquity of smartphones increases we see an increase in the popularity of location based services. Specifically, online social networks provide services such as alerting the user of friend co-location, and finding a user's k nearest neighbors. Location information is sensitive, which makes privacy a strong concern for location based systems like these. We have built one such service that allows two parties to share location information privately and securely. Our system allows every user to maintain and enforce their own policy. When one party, (Alice), queries the location of another party, (Bob), our system uses homomorphic encryption to test if Alice is within Bob's policy. If she is, Bob's location is shared with Alice only. If she is not, no user location information is shared with anyone. Due to the importance and sensitivity of location information, and the easily deployable design of our system, we offer a useful, practical, and important system to users. Our main contribution is a flexible, practical protocol for private proximity testing, a useful and efficient technique for representing location values, and a working implementation of the system we design in this paper. It is implemented as an Android application with the Facebook online social network used for communication between users.

2015-04-30
Frauenstein, E.D., Von Solms, R..  2014.  Combatting phishing: A holistic human approach. Information Security for South Africa (ISSA), 2014. :1-10.

Phishing continues to remain a lucrative market for cyber criminals, mostly because of the vulnerable human element. Through emails and spoofed-websites, phishers exploit almost any opportunity using major events, considerable financial awards, fake warnings and the trusted reputation of established organizations, as a basis to gain their victims' trust. For many years, humans have often been referred to as the `weakest link' towards protecting information. To gain their victims' trust, phishers continue to use sophisticated looking emails and spoofed websites to trick them, and rely on their victims' lack of knowledge, lax security behavior and organizations' inadequate security measures towards protecting itself and their clients. As such, phishing security controls and vulnerabilities can arguably be classified into three main elements namely human factors (H), organizational aspects (O) and technological controls (T). All three of these elements have the common feature of human involvement and as such, security gaps are inevitable. Each element also functions as both security control and security vulnerability. A holistic framework towards combatting phishing is required whereby the human feature in all three of these elements is enhanced by means of a security education, training and awareness programme. This paper discusses the educational factors required to form part of a holistic framework, addressing the HOT elements as well as the relationships between these elements towards combatting phishing. The development of this framework uses the principles of design science to ensure that it is developed with rigor. Furthermore, this paper reports on the verification of the framework.