Visible to the public Biblio

Filters: Keyword is Meters  [Clear All Filters]
2020-02-17
Arshad, Akashah, Hanapi, Zurina Mohd, Subramaniam, Shamala K., Latip, Rohaya.  2019.  Performance Evaluation of the Geographic Routing Protocols Scalability. 2019 International Conference on Information Networking (ICOIN). :396–398.
Scalability is an important design factor for evaluating the performance of routing protocols as the network size or traffic load increases. One of the most appropriate design methods is to use geographic routing approach to ensure scalability. This paper describes a scalability study comparing Secure Region Based Geographic Routing (SRBGR) and Dynamic Window Secure Implicit Geographic Forwarding (DWSIGF) protocols in various network density scenarios based on an end-to-end delay performance metric. The simulation studies were conducted in MATLAB 2106b where the network densities were varied according to the network topology size with increasing traffic rates. The results showed that DWSIGF has a lower end-to-end delay as compared to SRBGR for both sparse (15.4%) and high density (63.3%) network scenarios.Despite SRBGR having good security features, there is a need to improve the performance of its end-to-end delay to fulfil the application requirements.
Kumar, Sanjeev, Kumar, Harsh, Gunnam, Ganesh Reddy.  2019.  Security Integrity of Data Collection from Smart Electric Meter under a Cyber Attack. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :9–13.
Cyber security has been a top concern for electric power companies deploying smart meters and smart grid technology. Despite the well-known advantages of smart grid technology and the smart meters, it is not yet very clear how and to what extent, the Cyber attacks can hamper the operation of the smart meters, and remote data collections regarding the power usage from the customer sites. To understand these questions, we conducted experiments in a controlled lab environment of our cyber security lab to test a commercial grade smart meter. In this paper, we present results of our investigation for a commercial grade smart meter and measure the operation integrity of the smart meter under cyber-attack conditions.
Ganguly, Pallab, Nasipuri, Mita, Dutta, Sourav.  2019.  Challenges of the Existing Security Measures Deployed in the Smart Grid Framework. 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE). :1–5.
Due to the rise of huge population in mankind and the large variety of upcoming utilization of power, the energy requirement has substantially increased. Smart Grid is a very important part of the Smart Cities initiative and is one of the crucial components in distribution and reconciliation of energy. Security of the smart grid infrastructure, which is an integral part of the smart grid framework, intended at transitioning the conventional power grid system into a robust, reliable, adaptable and intelligent energy utility, is an impending problem that needs to be arrested quickly. With the increasingly intensifying integration of smart devices in the smart grid infrastructure with other interconnected applications and the communication backbone is compelling both the energy users and the energy utilities to thoroughly look into the privacy and security issues of the smart grid. In this paper, we present challenges of the existing security mechanisms deployed in the smart grid framework and we tried to bring forward the unresolved problems that would highlight the security aspects of Smart Grid as a challenging area of research and development in the future.
2020-02-10
Neema, Himanshu, Vardhan, Harsh, Barreto, Carlos, Koutsoukos, Xenofon.  2019.  Web-Based Platform for Evaluation of Resilient and Transactive Smart-Grids. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Today's smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks.
2019-12-30
Iqbal, Maryam, Iqbal, Mohammad Ayman.  2019.  Attacks Due to False Data Injection in Smart Grids: Detection Protection. 2019 1st Global Power, Energy and Communication Conference (GPECOM). :451-455.

As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.

2019-12-16
Cerf, Sophie, Robu, Bogdan, Marchand, Nicolas, Mokhtar, Sonia Ben, Bouchenak, Sara.  2018.  A Control-Theoretic Approach for Location Privacy in Mobile Applications. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1488-1493.

The prevalent use of mobile applications using location information to improve the quality of their service has arisen privacy issues, particularly regarding the extraction of user's points on interest. Many studies in the literature focus on presenting algorithms that allow to protect the user of such applications. However, these solutions often require a high level of expertise to be understood and tuned properly. In this paper, the first control-based approach of this problem is presented. The protection algorithm is considered as the ``physical'' plant and its parameters as control signals that enable to guarantee privacy despite user's mobility pattern. The following of the paper presents the first control formulation of POI-related privacy measure, as well as dynamic modeling and a simple yet efficient PI control strategy. The evaluation using simulated mobility records shows the relevance and efficiency of the presented approach.

2019-09-11
Yin, Z., Dou, S., Bai, H., Hou, Y..  2019.  Light-Weighted Security Access Scheme of Broadband Power Line Communications for Multi-Source Information Collection. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1087–1090.

With the continuously development of smart meter-reading technologies for decades, remote information collection of electricity, water, gas and heat meters have been realized. Due to the difference of electrical interfaces and communication protocols among various types of meters, communication modes of meter terminals are not so compatible, it is difficult to realize communication optimization of electricity, water, gas and heat meters information collection services. In addition, with the development of power consumption information acquisition system, the number of acquisition terminals soars greatly and the data of terminal access is highly concurrent. Therefore, the risk of security access is increasing. This paper presents a light-weighted security access scheme of power line communication based on multi-source data acquisition of electricity, water, gas and heat meters, which separates multi-source data acquisition services and achieve services security isolation and channel security isolation. The communication reliability and security of the meter-reading service of "electricity, water, gas and heat" will be improved and the integrated meter service will be realized reliably.

2019-03-28
He, Z., Pan, S., Lin, D..  2018.  PMDA: Privacy-Preserving Multi-Functional Data Aggregation Without TTP in Smart Grid. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1107-1114.

In the smart grid, residents' electricity usage needs to be periodically measured and reported for the purpose of better energy management. At the same time, real-time collection of residents' electricity consumption may unfavorably incur privacy leakage, which has motivated the research on privacy-preserving aggregation of electricity readings. Most previous studies either rely on a trusted third party (TTP) or suffer from expensive computation. In this paper, we first reveal the privacy flaws of a very recent scheme pursing privacy preservation without relying on the TTP. By presenting concrete attacks, we show that this scheme has failed to meet the design goals. Then, for better privacy protection, we construct a new scheme called PMDA, which utilizes Shamir's secret sharing to allow smart meters to negotiate aggregation parameters in the absence of a TTP. Using only lightweight cryptography, PMDA efficiently supports multi-functional aggregation of the electricity readings, and simultaneously preserves residents' privacy. Theoretical analysis is provided with regard to PMDA's security and efficiency. Moreover, experimental data obtained from a prototype indicates that our proposal is efficient and feasible for practical deployment.

2019-02-08
Bernardi, S., Trillo-Lado, R., Merseguer, J..  2018.  Detection of Integrity Attacks to Smart Grids Using Process Mining and Time-Evolving Graphs. 2018 14th European Dependable Computing Conference (EDCC). :136-139.
In this paper, we present a work-in-progress approach to detect integrity attacks to Smart Grids by analyzing the readings from smart meters. Our approach is based on process mining and time-evolving graphs. In particular, process mining is used to discover graphs, from the dataset collecting the readings over a time period, that represent the behaviour of a customer. The time-evolving graphs are then compared in order to detect anomalous behavior of a customer. To evaluate the feasibility of our approach, we have conducted preliminary experiments by using the dataset provided by the Ireland's Commission for Energy Regulation (CER).
2018-11-19
Jiang, Y., Hui, Q..  2017.  Kalman Filter with Diffusion Strategies for Detecting Power Grid False Data Injection Attacks. 2017 IEEE International Conference on Electro Information Technology (EIT). :254–259.

Electronic power grid is a distributed network used for transferring electricity and power from power plants to consumers. Based on sensor readings and control system signals, power grid states are measured and estimated. As a result, most conventional attacks, such as denial-of-service attacks and random attacks, could be found by using the Kalman filter. However, false data injection attacks are designed against state estimation models. Currently, distributed Kalman filtering is proved effective in sensor networks for detection and estimation problems. Since meters are distributed in smart power grids, distributed estimation models can be used. Thus in this paper, we propose a diffusion Kalman filter for the power grid to have a good performance in estimating models and to effectively detect false data injection attacks.

Cebe, M., Akkaya, K..  2017.  Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :313–317.

Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the public-keys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need of keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.

2018-06-07
Cho, G., Huh, J. H., Cho, J., Oh, S., Song, Y., Kim, H..  2017.  SysPal: System-Guided Pattern Locks for Android. 2017 IEEE Symposium on Security and Privacy (SP). :338–356.

To improve the security of user-chosen Android screen lock patterns, we propose a novel system-guided pattern lock scheme called "SysPal" that mandates the use of a small number of randomly selected points while selecting a pattern. Users are given the freedom to use those mandated points at any position. We conducted a large-scale online study with 1,717 participants to evaluate the security and usability of three SysPal policies, varying the number of mandatory points that must be used (upon selecting a pattern) from one to three. Our results suggest that the two SysPal policies that mandate the use of one and two points can help users select significantly more secure patterns compared to the current Android policy: 22.58% and 23.19% fewer patterns were cracked. Those two SysPal policies, however, did not show any statistically significant inferiority in pattern recall success rate (the percentage of participants who correctly recalled their pattern after 24 hours). In our lab study, we asked participants to install our screen unlock application on their own Android device, and observed their real-life phone unlock behaviors for a day. Again, our lab study did not show any statistically significant difference in memorability for those two SysPal policies compared to the current Android policy.

2018-05-30
Tavasoli, M., Alishahi, S., Zabihi, M., Khorashadizadeh, H., Mohajerzadeh, A. H..  2017.  An Efficient NSKDP Authentication Method to Secure Smart Grid. 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE). :276–280.

Since the Information Networks are added to the current electricity networks, the security and privacy of individuals is challenged. This combination of technologies creates vulnerabilities in the context of smart grid power which disrupt the consumer energy supply. Methods based on encryption are against the countermeasures attacks that have targeted the integrity and confidentiality factors. Although the cryptography strategies are used in Smart Grid, key management which is different in size from tens to millions of keys (for meters), is considered as the critical processes. The Key mismanagement causes to reveal the secret keys for attacker, a symmetric key distribution method is recently suggested by [7] which is based on a symmetric key distribution, this strategy is very suitable for smart electric meters. The problem with this method is its vulnerability to impersonating respondents attack. The proposed approach to solve this problem is to send the both side identifiers in encrypted form based on hash functions and a random value, the proposed solution is appropriate for devices such as meters that have very little computing power.

2018-03-19
Liang, G., Weller, S. R., Zhao, J., Luo, F., Dong, Z. Y..  2017.  False Data Injection Attacks Targeting DC Model-Based State Estimation. 2017 IEEE Power Energy Society General Meeting. :1–5.

The false data injection attack (FDIA) is a form of cyber-attack capable of affecting the secure and economic operation of the smart grid. With DC model-based state estimation, this paper analyzes ways of constructing a successful attacking vector to fulfill specific targets, i.e., pre-specified state variable target and pre-specified meter target according to the adversary's willingness. The grid operator's historical reading experiences on meters are considered as a constraint for the adversary to avoid being detected. Also from the viewpoint of the adversary, we propose to take full advantage of the dual concept of the coefficients in the topology matrix to handle with the problem that the adversary has no access to some meters. Effectiveness of the proposed method is validated by numerical experiments on the IEEE-14 benchmark system.

2018-02-21
Henneke, D., Freudenmann, C., Wisniewski, L., Jasperneite, J..  2017.  Implementation of industrial cloud applications as controlled local systems (CLS) in a smart grid context. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–7.

In Germany, as of 2017, a new smart metering infrastructure based on high security and privacy requirements will be deployed. It provides interfaces to connect meters for different commodities, to allow end users to retrieve the collected measurement data, to connect to the metering operators, and to connect Controllable Local Systems (CLSs) that establish a TLS secured connection to third parties in order to exchange data or for remote controlling of energy devices. This paper aims to connect industrial machines as CLS devices since it shows that the demands and main ideas of remotely controlled devices in the Smart Grid context and Industrial Cloud Applications match on the communication level. It describes the general architecture of the Smart Metering infrastructure in Germany, introduces the defined roles, depicts the configuration process on the different organizational levels, demonstrates the connection establishment and the initiating partners, concludes on the potential industrial use cases of this infrastructure, and provides open questions and room for further research.

Haq, E. U., Xu, H., Pan, L., Khattak, M. I..  2017.  Smart Grid Security: Threats and Solutions. 2017 13th International Conference on Semantics, Knowledge and Grids (SKG). :188–193.

the terms Smart grid, IntelliGrid, and secure astute grid are being used today to describe technologies that automatically and expeditiously (separate far from others) faults, renovate potency, monitor demand, and maintain and recuperate (firm and steady nature/lasting nature/vigor) for more reliable generation, transmission, and distribution of electric potency. In general, the terms describe the utilization of microprocessor-predicated astute electronic contrivances (IEDs) communicating with one another to consummate tasks afore now done by humans or left undone. These IEDs watch/ notice/ celebrate/ comply with the state of the puissance system, make edified decisions, and then take action to preserve the (firm and steady nature/lasting nature/vigor) and performance of the grid. Technology use/military accommodation in the home will sanction end users to manage their consumption predicated on their own predilections. In order to manage their consumption or the injuctive authorization placed on the grid, people (who utilize a product or accommodation) need information and an (able to transmute and get better) power distribution system. The astute grid is an accumulation of information sources and the automatic control system that manages the distribution of puissance, understands the transmutations in demand, and reacts to it by managing demand replication. Different billing (prosperity plans/ways of reaching goals) for mutable time and type of avail, as well as conservation and use or sale of distributed utilizable things/valuable supplies, will become part of perspicacious solutions. The traditional electrical power grid is currently evolving into the perspicacious grid. Perspicacious grid integrates the traditional electrical power grid with information and communication technologies (ICT). Such integration empowers the electrical utilities providers and consumers, amends the efficiency and the availability of the puissance system while perpetually monitoring, - ontrolling and managing the authoritative ordinances of customers. A keenly intellective grid is an astronomically immense intricate network composed of millions of contrivances and entities connected with each other. Such a massive network comes with many security concerns and susceptibilities. In this paper, we survey the latest on keenly intellective grid security. We highlight the involution of the keenly intellective grid network and discuss the susceptibilities concrete to this sizably voluminous heterogeneous network. We discuss then the challenges that subsist in securing the keenly intellective grid network and how the current security solutions applied for IT networks are not adequate to secure astute grid networks. We conclude by over viewing the current and needed security solutions for the keenly intellective gird.

Onoshakpor, R. M., Okafor, K. C..  2017.  Cyber security in smart grid convolution networks (SGCNs). 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON). :392–399.

There has been a growing spate of Cyber attacks targeted at different corporate enterprises and systems across the globe. The scope of these attacks spans from small scale (grid and control system manipulation, domestic meter cyber hacking etc) to large scale distributed denial of service attacks (DDoSA) in enterprise networks. The effect of hacking on control systems through distributed control systems (DCS) using communication protocols on vulnerable home area networks (HANs) and neighborhood area networks (NANs) is terrifying. To meet the current security requirements, a new security network is proposed called Smart grid convoluted network (SGCN). With SGCN, the basic activities of data processing, monitoring and query requests are implemented outside the grid using Fog computing layer-3 devices (gatekeepers). A cyber monitor agent that leverages a reliable end-to end-communication network to secure the systems components on the grid is employed. Cyber attacks which affects the computational requirements of SG applications is mitigated by using a Fourier predictive cyber monitor (FPCM). The network uses flexible resources with loopback services shared across the network. Serial parallelism and efficient bandwidth provisioning are used by the locally supported Fog nodes within the SG cloud space. For services differentiation, SGCN employed secure communication between its various micro-grids as well as its metering front-ends. With the simulated traffic payload extraction trend (STPET), SGCN promises hard time for hackers and malicious malwares. While the work guarantees security for SGs, reliability is still an open issue due to the complexity of SG architecture. In conclusion, the future of the Cyber security in SGs must employ the concept of Internet of Everything (IoE), Malware predictive analytics and Fog layers on existing SG prototypes for optimal security benefits.

2018-02-06
Chakraborty, N., Kalaimannan, E..  2017.  Minimum Cost Security Measurements for Attack Tree Based Threat Models in Smart Grid. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :614–618.

In this paper, we focus on the security issues and challenges in smart grid. Smart grid security features must address not only the expected deliberate attacks, but also inadvertent compromises of the information infrastructure due to user errors, equipment failures, and natural disasters. An important component of smart grid is the advanced metering infrastructure which is critical to support two-way communication of real time information for better electricity generation, distribution and consumption. These reasons makes security a prominent factor of importance to AMI. In recent times, attacks on smart grid have been modelled using attack tree. Attack tree has been extensively used as an efficient and effective tool to model security threats and vulnerabilities in systems where the ultimate goal of an attacker can be divided into a set of multiple concrete or atomic sub-goals. The sub-goals are related to each other as either AND-siblings or OR-siblings, which essentially depicts whether some or all of the sub-goals must be attained for the attacker to reach the goal. On the other hand, as a security professional one needs to find out the most effective way to address the security issues in the system under consideration. It is imperative to assume that each attack prevention strategy incurs some cost and the utility company would always look to minimize the same. We present a cost-effective mechanism to identify minimum number of potential atomic attacks in an attack tree.