Biblio
Conducted emission of motors is a domain of interest for EMC as it may introduce disturbances in the system in which they are integrated. Nevertheless few publications deal with the susceptibility of motors, and especially, servomotors despite this devices are more and more used in automated production lines as well as for robotics. Recent papers have been released devoted to the possibility of compromising such systems by cyber-attacks. One could imagine the use of smart intentional electromagnetic interference to modify their behavior or damage them leading in the modification of the industrial process. This paper aims to identify the disturbances that may affect the behavior of a Commercial Off-The-Shelf servomotor when exposed to an electromagnetic field and the criticality of the effects with regards to its application. Experiments have shown that a train of radio frequency pulses may induce an erroneous reading of the position value of the servomotor and modify in an unpredictable way the movement of the motor's axis.
By using generalized regression neural network clustering analysis, effective clustering of five kinds of network intrusion behavior modes is carried out. First of all, intrusion data is divided into five categories by making use of fuzzy C means clustering algorithm. Then, the samples that are closet to the center of each class in the clustering results are taken as the clustering training samples of generalized neural network for the data training, and the results output by the training are the individual owned invasion category. The experimental results showed that the new algorithm has higher classification accuracy of network intrusion ways, which can provide more reliable data support for the prevention of the network intrusion.
There has been a great deal of work on learning new robot skills, but very little consideration of how these newly acquired skills can be integrated into an overall intelligent system. A key aspect of such a system is compositionality: newly learned abilities have to be characterized in a form that will allow them to be flexibly combined with existing abilities, affording a (good!) combinatorial explosion in the robot's abilities. In this paper, we focus on learning models of the preconditions and effects of new parameterized skills, in a form that allows those actions to be combined with existing abilities by a generative planning and execution system.
Unmanned systems are increasing in number, while their manning requirements remain the same. To decrease manpower demands, machine learning techniques and autonomy are gaining traction and visibility. One barrier is human perception and understanding of autonomy. Machine learning techniques can result in “black box” algorithms that may yield high fitness, but poor comprehension by operators. However, Interactive Machine Learning (IML), a method to incorporate human input over the course of algorithm development by using neuro-evolutionary machine-learning techniques, may offer a solution. IML is evaluated here for its impact on developing autonomous team behaviors in an area search task. Initial findings show that IML-generated search plans were chosen over plans generated using a non-interactive ML technique, even though the participants trusted them slightly less. Further, participants discriminated each of the two types of plans from each other with a high degree of accuracy, suggesting the IML approach imparts behavioral characteristics into algorithms, making them more recognizable. Together the results lay the foundation for exploring how to team humans successfully with ML behavior.
Customer Edge Switching (CES) is an experimental Internet architecture that provides reliable and resilient multi-domain communications. It provides resilience against security threats because domains negotiate inbound and outbound policies before admitting new traffic. As CES and its signalling protocols are being prototyped, there is a need for independent testing of the CES architecture. Hence, our research goal is to develop an automated test framework that CES protocol designers and early adopters can use to improve the architecture. The test framework includes security, functional, and performance tests. Using the Robot Framework and STRIDE analysis, in this paper we present this automated security test framework. By evaluating sample test scenarios, we show that the Robot Framework and our CES test suite have provided productive discussions about this new architecture, in addition to serving as clear, easy-to-read documentation. Our research also confirms that test automation can be useful to improve new protocol architectures and validate their implementation.
The detection of obstacles is a fundamental issue in autonomous navigation, as it is the main key for collision prevention. This paper presents a method for the segmentation of general obstacles by stereo vision with no need of dense disparity maps or assumptions about the scenario. A sparse set of points is selected according to a local spatial condition and then clustered in function of its neighborhood, disparity values and a cost associated with the possibility of each point being part of an obstacle. The method was evaluated in hand-labeled images from KITTI object detection benchmark and the precision and recall metrics were calculated. The quantitative and qualitative results showed satisfactory in scenarios with different types of objects.
Mobile and aerial robots used in urban search and rescue (USAR) operations have shown the potential for allowing us to explore, survey and assess collapsed structures effectively at a safe distance. RGB-D cameras, such as the Microsoft Kinect, allow us to capture 3D depth data in addition to RGB images, providing a significantly richer user experience than flat video, which may provide improved situational awareness for first responders. However, the richer data comes at a higher cost in terms of data throughput and computing power requirements. In this paper we consider the problem of live streaming RGB-D data over wired and wireless communication channels, using low-power, embedded computing equipment. When assessing a disaster environment, a range camera is typically mounted on a ground or aerial robot along with the onboard computer system. Ground robots can use both wireless radio and tethers for communications, whereas aerial robots can only use wireless communication. We propose a hybrid lossless and lossy streaming compression format designed specifically for RGB-D data and investigate the feasibility and usefulness of live-streaming this data in disaster situations.
In military operation or emergency response situations, very frequently a commander will need to assemble and dynamically manage Community of Interest (COI) mobile groups to achieve a critical mission assigned despite failure, disconnection or compromise of COI members. We combine the designs of COI hierarchical management for scalability and reconfigurability with COI dynamic trust management for survivability and intrusion tolerance to compose a scalable, reconfigurable, and survivable COI management protocol for managing COI mission-oriented mobile groups in heterogeneous mobile environments. A COI mobile group in this environment would consist of heterogeneous mobile entities such as communication-device-carried personnel/robots and aerial or ground vehicles operated by humans exhibiting not only quality of service (QoS) characters, e.g., competence and cooperativeness, but also social behaviors, e.g., connectivity, intimacy and honesty. A COI commander or a subtask leader must measure trust with both social and QoS cognition depending on mission task characteristics and/or trustee properties to ensure successful mission execution. In this paper, we present a dynamic hierarchical trust management protocol that can learn from past experiences and adapt to changing environment conditions, e.g., increasing misbehaving node population, evolving hostility and node density, etc. to enhance agility and maximize application performance. With trust-based misbehaving node detection as an application, we demonstrate how our proposed COI trust management protocol is resilient to node failure, disconnection and capture events, and can help maximize application performance in terms of minimizing false negatives and positives in the presence of mobile nodes exhibiting vastly distinct QoS and social behaviors.
In military operation or emergency response situations, very frequently a commander will need to assemble and dynamically manage Community of Interest (COI) mobile groups to achieve a critical mission assigned despite failure, disconnection or compromise of COI members. We combine the designs of COI hierarchical management for scalability and reconfigurability with COI dynamic trust management for survivability and intrusion tolerance to compose a scalable, reconfigurable, and survivable COI management protocol for managing COI mission-oriented mobile groups in heterogeneous mobile environments. A COI mobile group in this environment would consist of heterogeneous mobile entities such as communication-device-carried personnel/robots and aerial or ground vehicles operated by humans exhibiting not only quality of service (QoS) characters, e.g., competence and cooperativeness, but also social behaviors, e.g., connectivity, intimacy and honesty. A COI commander or a subtask leader must measure trust with both social and QoS cognition depending on mission task characteristics and/or trustee properties to ensure successful mission execution. In this paper, we present a dynamic hierarchical trust management protocol that can learn from past experiences and adapt to changing environment conditions, e.g., increasing misbehaving node population, evolving hostility and node density, etc. to enhance agility and maximize application performance. With trust-based misbehaving node detection as an application, we demonstrate how our proposed COI trust management protocol is resilient to node failure, disconnection and capture events, and can help maximize application performance in terms of minimizing false negatives and positives in the presence of mobile nodes exhibiting vastly distinct QoS and social behaviors.
- « first
- ‹ previous
- 1
- 2
- 3
- 4