Visible to the public Biblio

Filters: Keyword is robots  [Clear All Filters]
2023-06-22
Vibhandik, Harshavardhan, Kale, Sudhanshu, Shende, Samiksha, Goudar, Mahesh.  2022.  Medical Assistance Robot with capabilities of Mask Detection with Automatic Sanitization and Social Distancing Detection/ Awareness. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :340–347.
Healthcare sectors such as hospitals, nursing homes, medical offices, and hospice homes encountered several obstacles due to the outbreak of Covid-19. Wearing a mask, social distancing and sanitization are some of the most effective methods that have been proven to be essential to minimize the virus spread. Lately, medical executives have been appointed to monitor the virus spread and encourage the individuals to follow cautious instructions that have been provided to them. To solve the aforementioned challenges, this research study proposes an autonomous medical assistance robot. The proposed autonomous robot is completely service-based, which helps to monitor whether or not people are wearing a mask while entering any health care facility and sanitizes the people after sending a warning to wear a mask by using the image processing and computer vision technique. The robot not only monitors but also promotes social distancing by giving precautionary warnings to the people in healthcare facilities. The robot can assist the health care officials carrying the necessities of the patent while following them for maintaining a touchless environment. With thorough simulative testing and experiments, results have been finally validated.
2023-06-16
Li, Bin, Fu, Yu, Wang, Kun.  2022.  A Review on Cloud Data Assured Deletion. 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT). :451—457.
At present, cloud service providers control the direct management rights of cloud data, and cloud data cannot be effectively and assured deleted, which may easily lead to security problems such as data residue and user privacy leakage. This paper analyzes the related research work of cloud data assured deletion in recent years from three aspects: encryption key deletion, multi-replica association deletion, and verifiable deletion. The advantages and disadvantages of various deletion schemes are analysed in detail, and finally the prospect of future research on assured deletion of cloud data is given.
2023-06-09
Hristozov, Anton, Matson, Eric, Dietz, Eric, Rogers, Marcus.  2022.  Sensor Data Protection in Cyber-Physical Systems. 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). :855—859.
Cyber-Physical Systems (CPS) have a physical part that can interact with sensors and actuators. The data that is read from sensors and the one generated to drive actuators is crucial for the correct operation of this class of devices. Most implementations trust the data being read from sensors and the outputted data to actuators. Real-time validation of the input and output of data for any system is crucial for the safety of its operation. This paper proposes an architecture for handling this issue through smart data guards detached from sensors and controllers and acting solely on the data. This mitigates potential issues of malfunctioning sensors and intentional sensor and controller attacks. The data guards understand the expected data, can detect anomalies and can correct them in real-time. This approach adds more guarantees for fault-tolerant behavior in the presence of attacks and sensor failures.
2023-05-12
Cavorsi, Matthew, Gil, Stephanie.  2022.  Providing Local Resilience to Vulnerable Areas in Robotic Networks. 2022 International Conference on Robotics and Automation (ICRA). :4929–4935.
We study how information flows through a multi-robot network in order to better understand how to provide resilience to malicious information. While the notion of global resilience is well studied, one way existing methods provide global resilience is by bringing robots closer together to improve the connectivity of the network. However, large changes in network structure can impede the team from performing other functions such as coverage, where the robots need to spread apart. Our goal is to mitigate the trade-off between resilience and network structure preservation by applying resilience locally in areas of the network where it is needed most. We introduce a metric, Influence, to identify vulnerable regions in the network requiring resilience. We design a control law targeting local resilience to the vulnerable areas by improving the connectivity of robots within these areas so that each robot has at least 2F+1 vertex-disjoint communication paths between itself and the high influence robot in the vulnerable area. We demonstrate the performance of our local resilience controller in simulation and in hardware by applying it to a coverage problem and comparing our results with an existing global resilience strategy. For the specific hardware experiments, we show that our control provides local resilience to vulnerable areas in the network while only requiring 9.90% and 15.14% deviations from the desired team formation compared to the global strategy.
2023-03-06
Mallik, Abhidipta, Kapila, Vikram.  2020.  Interactive Learning of Mobile Robots Kinematics Using ARCore. 2020 5th International Conference on Robotics and Automation Engineering (ICRAE). :1–6.
Recent years have witnessed several educational innovations to provide effective and engaging classroom instruction with the integration of immersive interactions based on augmented reality and virtual reality (AR/VR). This paper outlines the development of an ARCore-based application (app) that can impart interactive experiences for hands-on learning in engineering laboratories. The ARCore technology enables a smartphone to sense its environment and detect horizontal and vertical surfaces, thus allowing the smartphone to estimate any position in its workspace. In this mobile app, with touch-based interaction and AR feedback, the user can interact with a wheeled mobile robot and reinforce the concepts of kinematics for a differential drive mobile robot. The user experience is evaluated and system performance is validated through a user study with participants. The assessment shows that the proposed AR interface for interacting with the experimental setup is intuitive, easy to use, exciting, and recommendable.
Deng, Weiyang, Sargent, Barbara, Bradley, Nina S., Klein, Lauren, Rosales, Marcelo, Pulido, José Carlos, Matarić, Maja J, Smith, Beth A..  2021.  Using Socially Assistive Robot Feedback to Reinforce Infant Leg Movement Acceleration. 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). :749–756.
Learning movement control is a fundamental process integral to infant development. However, it is still unclear how infants learn to control leg movement. This work explores the potential of using socially assistive robots to provide real-time adaptive reinforcement learning for infants. Ten 6 to 8-month old typically-developing infants participated in a study where a robot provided reinforcement when the infant’s right leg acceleration fell within the range of 9 to 20 m/s2. If infants increased the proportion of leg accelerations in this band, they were categorized as "performers". Six of the ten participating infants were categorized as performers; the performer subgroup increased the magnitude of acceleration, proportion of target acceleration for right leg, and ratio of right/left leg acceleration peaks within the target acceleration band and their right legs increased movement intensity from the baseline to the contingency session. The results showed infants specifically adjusted their right leg acceleration in response to a robot- provided reward. Further study is needed to understand how to improve human-robot interaction policies for personalized interventions for young infants.
ISSN: 1944-9437
2023-02-17
Georgieva-Trifonova, Tsvetanka.  2022.  Research on Filtering Feature Selection Methods for E-Mail Spam Detection by Applying K-NN Classifier. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–4.
In the present paper, the application of filtering methods to select features when detecting email spam using the K-NN classifier is examined. The experiments include computation of the accuracy and F-measure of the e-mail texts classification with different methods for feature selection, different number of selected features and two ways to find the distance between dataset examples when executing K-NN classifier - Euclidean distance and cosine similarity. The obtained results are summarized and analyzed.
Esterwood, Connor, Robert, Lionel P..  2022.  Having the Right Attitude: How Attitude Impacts Trust Repair in Human—Robot Interaction. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :332–341.
Robot co-workers, like human co-workers, make mistakes that undermine trust. Yet, trust is just as important in promoting human-robot collaboration as it is in promoting human-human collaboration. In addition, individuals can signif-icantly differ in their attitudes toward robots, which can also impact or hinder their trust in robots. To better understand how individual attitude can influence trust repair strategies, we propose a theoretical model that draws from the theory of cognitive dissonance. To empirically verify this model, we conducted a between-subjects experiment with 100 participants assigned to one of four repair strategies (apologies, denials, explanations, or promises) over three trust violations. Individual attitudes did moderate the efficacy of repair strategies and this effect differed over successive trust violations. Specifically, repair strategies were most effective relative to individual attitude during the second of the three trust violations, and promises were the trust repair strategy most impacted by an individual's attitude.
Patel, Sabina M., Phillips, Elizabeth, Lazzara, Elizabeth H..  2022.  Updating the paradigm: Investigating the role of swift trust in human-robot teams. 2022 IEEE 3rd International Conference on Human-Machine Systems (ICHMS). :1–1.
With the influx of technology use and human-robot teams, it is important to understand how swift trust is developed within these teams. Given this influx, we plan to study how surface cues (i.e., observable characteristics) and imported information (i.e., knowledge from external sources or personal experiences) effect the development of swift trust. We hypothesize that human-like surface level cues and positive imported information will yield higher swift trust. These findings will help the assignment of human robot teams in the future.
Rossi, Alessandra, Andriella, Antonio, Rossi, Silvia, Torras, Carme, Alenyà, Guillem.  2022.  Evaluating the Effect of Theory of Mind on People’s Trust in a Faulty Robot. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :477–482.
The success of human-robot interaction is strongly affected by the people’s ability to infer others’ intentions and behaviours, and the level of people’s trust that others will abide by their same principles and social conventions to achieve a common goal. The ability of understanding and reasoning about other agents’ mental states is known as Theory of Mind (ToM). ToM and trust, therefore, are key factors in the positive outcome of human-robot interaction. We believe that a robot endowed with a ToM is able to gain people’s trust, even when this may occasionally make errors.In this work, we present a user study in the field in which participants (N=123) interacted with a robot that may or may not have a ToM, and may or may not exhibit erroneous behaviour. Our findings indicate that a robot with ToM is perceived as more reliable, and they trusted it more than a robot without a ToM even when the robot made errors. Finally, ToM results to be a key driver for tuning people’s trust in the robot even when the initial condition of the interaction changed (i.e., loss and regain of trust in a longer relationship).
ISSN: 1944-9437
Schüle, Mareike, Kraus, Johannes Maria, Babel, Franziska, Reißner, Nadine.  2022.  Patients' Trust in Hospital Transport Robots: Evaluation of the Role of User Dispositions, Anxiety, and Robot Characteristics. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :246–255.
For designing the interaction with robots in healthcare scenarios, understanding how trust develops in such situations characterized by vulnerability and uncertainty is important. The goal of this study was to investigate how technology-related user dispositions, anxiety, and robot characteristics influence trust. A second goal was to substantiate the association between hospital patients' trust and their intention to use a transport robot. In an online study, patients, who were currently treated in hospitals, were introduced to the concept of a transport robot with both written and video-based material. Participants evaluated the robot several times. Technology-related user dispositions were found to be essentially associated with trust and the intention to use. Furthermore, hospital patients' anxiety was negatively associated with the intention to use. This relationship was mediated by trust. Moreover, no effects of the manipulated robot characteristics were found. In conclusion, for a successful implementation of robots in hospital settings patients' individual prior learning history - e.g., in terms of existing robot attitudes - and anxiety levels should be considered during the introduction and implementation phase.
Babel, Franziska, Hock, Philipp, Kraus, Johannes, Baumann, Martin.  2022.  It Will Not Take Long! Longitudinal Effects of Robot Conflict Resolution Strategies on Compliance, Acceptance and Trust. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :225–235.
Domestic service robots become increasingly prevalent and autonomous, which will make task priority conflicts more likely. The robot must be able to effectively and appropriately negotiate to gain priority if necessary. In previous human-robot interaction (HRI) studies, imitating human negotiation behavior was effective but long-term effects have not been studied. Filling this research gap, an interactive online study (\$N=103\$) with two sessions and six trials was conducted. In a conflict scenario, participants repeatedly interacted with a domestic service robot that applied three different conflict resolution strategies: appeal, command, diminution of request. The second manipulation was reinforcement (thanking) of compliance behavior (yes/no). This led to a 3×2×6 mixed-subject design. User acceptance, trust, user compliance to the robot, and self-reported compliance to a household member were assessed. The diminution of a request combined with positive reinforcement was the most effective strategy and perceived trustworthiness increased significantly over time. For this strategy only, self-reported compliance rates to the human and the robot were similar. Therefore, applying this strategy potentially seems to make a robot equally effective as a human requester. This paper contributes to the design of acceptable and effective robot conflict resolution strategies for long-term use.
Maehigashi, Akihiro.  2022.  The Nature of Trust in Communication Robots: Through Comparison with Trusts in Other People and AI systems. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :900–903.
In this study, the nature of human trust in communication robots was experimentally investigated comparing with trusts in other people and artificial intelligence (AI) systems. The results of the experiment showed that trust in robots is basically similar to that in AI systems in a calculation task where a single solution can be obtained and is partly similar to that in other people in an emotion recognition task where multiple interpretations can be acceptable. This study will contribute to designing a smooth interaction between people and communication robots.
2023-02-13
Mukalazi, Arafat, Boyaci, Ali.  2022.  The Internet of Things: a domain-specific security requirement classification. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1—8.
Worldwide, societies are rapidly becoming more connected, owing primarily to the growing number of intelligent things and smart applications (e.g, smart automobiles, smart wearable devices, etc.) These have occurred in tandem with the Internet Of Things, a new method of connecting the physical and virtual worlds. It is a new promising paradigm whereby every ‘thing’ can connect to anything via the Internet. However, with IoT systems being deployed even on large-scale, security concerns arise amongst other challenges. Hence the need to allocate appropriate protection of resources. The realization of secure IoT systems could only be accomplished with a comprehensive understanding of the particular needs of a specific system. How-ever, this paradigm lacks a proper and exhaustive classification of security requirements. This paper presents an approach towards understanding and classifying the security requirements of IoT devices. This effort is expected to play a role in designing cost-efficient and purposefully secured future IoT systems. During the coming up with and the classification of the requirements, We present a variety of set-ups and define possible attacks and threats within the scope of IoT. Considering the nature of IoT and security weaknesses as manifestations of unrealized security requirements, We put together possible attacks and threats in categories, assessed the existent IoT security requirements as seen in literature, added more in accordance with the applied domain of the IoT and then classified the security requirements. An IoT system can be secure, scalable, and flexible by following the proposed security requirement classification.
2022-12-09
Hussain, Karrar, Vanathi, D., Jose, Bibin K, Kavitha, S, Rane, Bhuvaneshwari Yogesh, Kaur, Harpreet, Sandhya, C..  2022.  Internet of Things- Cloud Security Automation Technology Based on Artificial Intelligence. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :42—47.
The development of industrial robots, as a carrier of artificial intelligence, has played an important role in promoting the popularisation of artificial intelligence super automation technology. The paper introduces the system structure, hardware structure, and software system of the mobile robot climber based on computer big data technology, based on this research background. At the same time, the paper focuses on the climber robot's mechanism compound method and obstacle avoidance control algorithm. Smart home computing focuses on “home” and brings together related peripheral industries to promote smart home services such as smart appliances, home entertainment, home health care, and security monitoring in order to create a safe, secure, energy-efficient, sustainable, and comfortable residential living environment. It's been twenty years. There is still no clear definition of “intelligence at home,” according to Philips Inc., a leading consumer electronics manufacturer, which once stated that intelligence should comprise sensing, connectedness, learning, adaption, and ease of interaction. S mart applications and services are still in the early stages of development, and not all of them can yet exhibit these five intelligent traits.
2022-07-01
Boloka, Tlou, Makondo, Ndivhuwo, Rosman, Benjamin.  2021.  Knowledge Transfer using Model-Based Deep Reinforcement Learning. 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :1—6.
Deep reinforcement learning has recently been adopted for robot behavior learning, where robot skills are acquired and adapted from data generated by the robot while interacting with its environment through a trial-and-error process. Despite this success, most model-free deep reinforcement learning algorithms learn a task-specific policy from a clean slate and thus suffer from high sample complexity (i.e., they require a significant amount of interaction with the environment to learn reasonable policies and even more to reach convergence). They also suffer from poor initial performance due to executing a randomly initialized policy in the early stages of learning to obtain experience used to train a policy or value function. Model based deep reinforcement learning mitigates these shortcomings. However, it suffers from poor asymptotic performance in contrast to a model-free approach. In this work, we investigate knowledge transfer from a model-based teacher to a task-specific model-free learner to alleviate executing a randomly initialized policy in the early stages of learning. Our experiments show that this approach results in better asymptotic performance, enhanced initial performance, improved safety, better action effectiveness, and reduced sample complexity.
2022-06-30
Wu, Jia-Ling, Tai, Nan-Ching.  2021.  Innovative CAPTCHA to Both Exclude Robots and Detect Humans with Color Blindness. 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). :1—2.
This paper presents a design concept of an innovative CAPTCHA that can filter the color-vision–recognition states of different users. It can simultaneously verify the real-human-user identity, differentiate between the color-vision needs, and decide the content to be presented automatically.
2022-06-09
Adamik, Mark, Dudzinska, Karolina, Herskind, Adrian J., Rehm, Matthias.  2021.  The Difference Between Trust Measurement and Behavior: Investigating the Effect of Personalizing a Robot's Appearance on Trust in HRI. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :880–885.
With the increased use of social robots in critical applications, like elder care and rehabilitation, it becomes necessary to investigate the user's trust in robots to prevent over- and under-utilization of the robotic systems. While several studies have shown how trust increases through personalised behaviour, there is a lack of research concerned with the influence of personalised physical appearance. This study explores the effect of personalised physical appearance on trust in human-robot-interaction (HRI). In an online game, 60 participants interacted with a robot, where half of the participants were asked to personalise the robot prior to the game. Trust was measured through a trust-related questionnaire as well as by evaluating user behaviour during the game. Results indicate that personalised physical appearance does not directly correlate to higher trust perceptions, however, there was significant evidence that players exhibit more trusting behaviours in a game against a personalised robot.
Pang, Yijiang, Huang, Chao, Liu, Rui.  2021.  Synthesized Trust Learning from Limited Human Feedback for Human-Load-Reduced Multi-Robot Deployments. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :778–783.
Human multi-robot system (MRS) collaboration is demonstrating potentials in wide application scenarios due to the integration of human cognitive skills and a robot team’s powerful capability introduced by its multi-member structure. However, due to limited human cognitive capability, a human cannot simultaneously monitor multiple robots and identify the abnormal ones, largely limiting the efficiency of the human-MRS collaboration. There is an urgent need to proactively reduce unnecessary human engagements and further reduce human cognitive loads. Human trust in human MRS collaboration reveals human expectations on robot performance. Based on trust estimation, the work between a human and MRS will be reallocated that an MRS will self-monitor and only request human guidance in critical situations. Inspired by that, a novel Synthesized Trust Learning (STL) method was developed to model human trust in the collaboration. STL explores two aspects of human trust (trust level and trust preference), meanwhile accelerates the convergence speed by integrating active learning to reduce human workload. To validate the effectiveness of the method, tasks "searching victims in the context of city rescue" were designed in an open-world simulation environment, and a user study with 10 volunteers was conducted to generate real human trust feedback. The results showed that by maximally utilizing human feedback, the STL achieved higher accuracy in trust modeling with a few human feedback, effectively reducing human interventions needed for modeling an accurate trust, therefore reducing human cognitive load in the collaboration.
2022-06-06
Papallas, Rafael, Dogar, Mehmet R..  2020.  Non-Prehensile Manipulation in Clutter with Human-In-The-Loop. 2020 IEEE International Conference on Robotics and Automation (ICRA). :6723–6729.
We propose a human-operator guided planning approach to pushing-based manipulation in clutter. Most recent approaches to manipulation in clutter employs randomized planning. The problem, however, remains a challenging one where the planning times are still in the order of tens of seconds or minutes, and the success rates are low for difficult instances of the problem. We build on these control-based randomized planning approaches, but we investigate using them in conjunction with human-operator input. In our framework, the human operator supplies a high-level plan, in the form of an ordered sequence of objects and their approximate goal positions. We present experiments in simulation and on a real robotic setup, where we compare the success rate and planning times of our human-in-the-loop approach with fully autonomous sampling-based planners. We show that with a minimal amount of human input, the low-level planner can solve the problem faster and with higher success rates.
Shin, Ho-Chul.  2019.  Abnormal Detection based on User Feedback for Abstracted Pedestrian Video. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :1036–1038.
In this study, we present the abstracted pedestrian behavior representation and abnormal detection method based on user feedback for pedestrian video surveillance system. Video surveillance data is large in size and difficult to process in real time. To solve this problem, we suggested a method of expressing the pedestrian behavior with abbreviated map. In the video surveillance system, false detection of an abnormal situation becomes a big problem. If surveillance user can guide the false detection case as human in the loop, the surveillance system can learn the case and reduce the false detection error in the future. We suggested user feedback based abnormal pedestrian detection method. By the suggested user feedback algorithm, the false detection can be reduced to less than 0.5%.
2022-03-22
S, Muthulakshmi, R, Chitra.  2021.  Enhanced Data Privacy Algorithm to Protect the Data in Smart Grid. 2021 Smart Technologies, Communication and Robotics (STCR). :1—4.
Smart Grid is used to improve the accuracy of the grid network query. Though it gives the accuracy, it has the data privacy issues. It is a big challenge to solve the privacy issue in the smart grid. We need secured algorithms to protect the data in the smart grid, since the data is very important. This paper explains about the k-anonymous algorithm and analyzes the enhanced L-diversity algorithm for data privacy and security. The algorithm can protect the data in the smart grid is proven by the experiments.
2022-02-03
Esterwood, Connor, Robert, Lionel P..  2021.  Do You Still Trust Me? Human-Robot Trust Repair Strategies 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :183—188.
Trust is vital to promoting human and robot collaboration, but like human teammates, robots make mistakes that undermine trust. As a result, a human’s perception of his or her robot teammate’s trustworthiness can dramatically decrease [1], [2], [3], [4]. Trustworthiness consists of three distinct dimensions: ability (i.e. competency), benevolence (i.e. concern for the trustor) and integrity (i.e. honesty) [5], [6]. Taken together, decreases in trustworthiness decreases trust in the robot [7]. To address this, we conducted a 2 (high vs. low anthropomorphism) x 4 (trust repair strategies) between-subjects experiment. Preliminary results of the first 164 participants (between 19 and 24 per cell) highlight which repair strategies are effective relative to ability, integrity and benevolence and the robot’s anthropomorphism. Overall, this paper contributes to the HRI trust repair literature.
Mafioletti, Diego Rossi, de Mello, Ricardo Carminati, Ruffini, Marco, Frascolla, Valerio, Martinello, Magnos, Ribeiro, Moises R. N..  2021.  Programmable Data Planes as the Next Frontier for Networked Robotics Security: A ROS Use Case. 2021 17th International Conference on Network and Service Management (CNSM). :160—165.
In-Network Computing is a promising field that can be explored to leverage programmable network devices to offload computing towards the edge of the network. This has created great interest in supporting a wide range of network functionality in the data plane. Considering a networked robotics domain, this brings new opportunities to tackle the communication latency challenges. However, this approach opens a room for hardware-level exploits, with the possibility to add a malicious code to the network device in a hidden fashion, compromising the entire communication in the robotic facilities. In this work, we expose vulnerabilities that are exploitable in the most widely used flexible framework for writing robot software, Robot Operating System (ROS). We focus on ROS protocol crossing a programmable SmartNIC as a use case for In-Network Hijacking and In-Network Replay attacks, that can be easily implemented using the P4 language, exposing security vulnerabilities for hackers to take control of the robots or simply breaking the entire system.
Rani, V. Usha, Sridevi, J, Sai, P. Mohan.  2021.  Web Controlled Raspberry Pi Robot Surveillance. 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). :1—5.
Security is a major thing to focus on during this modern era as it is very important to secure your surroundings for the well being of oneself and his family, But there are many drawbacks of using conventional security surveillance cameras as they have to be set in a particular angle for good visual and they do not cover a large area, conventional security cameras can only be used from a particular device and cannot alert the user during an unforeseen circumstance. Hence we require a much more efficient device for better security a web controlled surveillance robot is much more practical device to be used compared to conventional security surveillance, this system needs a single camera to perform its operation and the user can monitor a wide range of area, any device with a wireless connection to the internet can be used to operate this device. This robot can move to any location within the range of the network and can be accessed globally from anywhere and as it uses only one camera to secure a large area it is also cost-efficient. At the core of the system lies Raspberry-pi which is responsible for all the operation of the system and the size of the device can be engineered according to the area it is to be used.