Biblio
Industry 4.0 is based on the CPS architecture since it is the next generation in the industry. The CPS architecture is a system based on Cloud Computing technology and Internet of Things where computer elements collaborate for the control of physical entities. The security framework in this architecture is necessary for the protection of two parts (physical and information) so basically, security in CPS is classified into two main parts: information security (data) and security of control. In this work, we propose two models to solve the two problems detected in the security framework. The first proposal SCCAF (Smart Cloud Computing Adoption Framework) treats the nature of information that serves for the detection and the blocking of the threats our basic architecture CPS. The second model is a modeled detector related to the physical nature for detecting node information.
The term "Cyber Physical System" (CPS) has been used in the recent years to describe a system type, which makes use of powerful communication networks to functionally combine systems that were previously thought of as independent. The common theme of CPSs is that through communication, CPSs can make decisions together and achieve common goals. Yet, in contrast to traditional system types such as embedded systems, the functional dependence between CPSs can change dynamically at runtime. Hence, their functional dependence may cause unforeseen runtime behavior, e.g., when a CPS becomes unavailable, but others depend on its correct operation. During development of any individual CPS, this runtime behavior must hence be predicted, and the system must be developed with the appropriate level of robustness. Since at present, research is mainly concerned with the impact of functional dependence in CPS on development, the impact on runtime behavior is mere conjecture. In this paper, we present AirborneCPS, a simulation tool for functionally dependent CPSs which simulates runtime behavior and aids in the identification of undesired functional interaction.
Observing semantic dependencies in large and heterogeneous networks is a critical task, since it is quite difficult to find the actual source of a malfunction in the case of an error. Dependencies might exist between many network nodes and among multiple hops in paths. If those dependency structures are unknown, debugging errors gets quite difficult. Since CPS and other large networks change at runtime and consists of custom software and hardware, as well as components off-the-shelf, it is necessary to be able to not only include own components in approaches to detect dependencies between nodes. In this paper we present an extension to the Information Flow Monitor approach. Our goal is that this approach should be able to handle unalterable blackbox nodes. This is quite challenging, since the IFM originally requires each network node to be compliant with the IFM protocol.
Cyber risk assessment of a Cyber-Physical System (CPS) without damaging it and without contaminating it with malware is an important and hard problem. Previous work developed a solution to this problem using a control component for simulating cyber effects in a CPS model to mimic a cyber attack. This paper extends the previous work by presenting an algorithm for semi-automated insertion of control components into a CPS model based on Discrete Event Systems (DEVS) formalism. We also describe how to use this algorithm to insert a control component into Live, Virtual, Constructive (LVC) environments that may have non-DEVS models, thereby extending our solution to other systems in general.
Cyber Physical Systems (CPS) operating in modern critical infrastructures (CIs) are increasingly being targeted by highly sophisticated cyber attacks. Threat actors have quickly learned of the value and potential impact of targeting CPS, and numerous tailored multi-stage cyber-physical attack campaigns, such as Advanced Persistent Threats (APTs), have been perpetrated in the last years. They aim at stealthily compromising systems' operations and cause severe impact on daily business operations such as shutdowns, equipment damage, reputation damage, financial loss, intellectual property theft, and health and safety risks. Protecting CIs against such threats has become as crucial as complicated. Novel distributed detection and reaction methodologies are necessary to effectively uncover these attacks, and timely mitigate their effects. Correlating large amounts of data, collected from a multitude of relevant sources, is fundamental for Security Operation Centers (SOCs) to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of attacks. In our previous work we introduced three methods for security information correlation. In this paper we define metrics and benchmarks to evaluate these correlation methods, we assess their accuracy, and we compare their performance. We finally demonstrate how the presented techniques, implemented within our cyber threat intelligence analysis engine called CAESAIR, can be applied to support incident handling tasks performed by SOCs.
One challenge for engineered cyber physical systems (CPSs) is the possibility for a malicious intruder to change the data transmitted across the cyber channel as a means to degrade the performance of the physical system. In this paper, we consider a data injection attack on a cyber physical system. We propose a hybrid framework for detecting the presence of an attack and operating the plant in spite of the attack. Our method uses an observer-based detection mechanism and a passivity balance defense framework in the hybrid architecture. By switching the controller, passivity and exponential stability are established under the proposed framework.
Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.
Conventional cyber defenses require continual maintenance: virus, firmware, and software updates; costly functional impact tests; and dedicated staff within a security operations center. The conventional defenses require access to external sources for the latest updates. The whitelisted system, however, is ideally a system that can sustain itself freed from external inputs. Cyber-Physical Systems (CPS), have the following unique traits: digital commands are physically observable and verifiable; possible combinations of commands are limited and finite. These CPS traits, combined with a trust anchor to secure an unclonable digital identity (i.e., digitally unclonable function [DUF] - Patent Application \#15/183,454; CodeLock), offers an excellent opportunity to explore defenses built on whitelisting approach called “Trustworthy Design Architecture (TDA).” There exist significant research challenges in defining what are the physically verifiable whitelists as well as the criteria for cyber-physical traits that can be used as the unclonable identity. One goal of the project is to identify a set of physical and/or digital characteristics that can uniquely identify an endpoint. The measurements must have the properties of being reliable, reproducible, and trustworthy. Given that adversaries naturally evolve with any defense, the adversary will have the goal of disrupting or spoofing this process. To protect against such disruptions, we provide a unique system engineering technique, when applied to CPSs (e.g., nuclear processing facilities, critical infrastructures), that will sustain a secure operational state without ever needing external information or active inputs from cybersecurity subject-matter experts (i.e., virus updates, IDS scans, patch management, vulnerability updates). We do this by eliminating system dependencies on external sources for protection. Instead, all internal co- munication is actively sealed and protected with integrity, authenticity and assurance checks that only cyber identities bound to the physical component can deliver. As CPSs continue to advance (i.e., IoTs, drones, ICSs), resilient-maintenance free solutions are needed to neutralize/reduce cyber risks. TDA is a conceptual system engineering framework specifically designed to address cyber-physical systems that can potentially be maintained and operated without the persistent need or demand for vulnerability or security patch updates.
Securing cyber-physical systems is hard. They are complex infrastructures comprising multiple technological artefacts, designers, operators and users. Existing research has established the security challenges in such systems as well as the role of usable security to support humans in effective security decisions and actions. In this paper we focus on smart cyber-physical systems, such as those based on the Internet of Things (IoT). Such smart systems aim to intelligently automate a variety of functions, with the goal of hiding that complexity from the user. Furthermore, the interactions of the user with such systems are more often implicit than explicit, for instance, a pedestrian with wearables walking through a smart city environment will most likely interact with the smart environment implicitly through a variety of inferred preferences based on previously provided or automatically collected data. The key question that we explore is that of empowering software engineers to pragmatically take into account how users make informed security choices about their data and information in such a pervasive environment. We discuss a range of existing frameworks considering the impact of automation on user behaviours and argue for the need of a shift–-from usability to security ergonomics as a key requirement when designing and implementing security features in smart cyber-physical environments. Of course, the considerations apply more broadly than security but, in this paper, we focus only on security as a key concern.
A lot of research in security of cyber physical systems focus on threat models where an attacker can spoof sensor readings by compromising the communication channel. A little focus is given to attacks on physical components. In this paper a method to detect potential attacks on physical components in a Cyber Physical System (CPS) is proposed. Physical attacks are detected through a comparison of noise pattern from sensor measurements to a reference noise pattern. If an adversary has physically modified or replaced a sensor, the proposed method issues an alert indicating that a sensor is probably compromised or is defective. A reference noise pattern is established from the sensor data using a deterministic model. This pattern is referred to as a fingerprint of the corresponding sensor. The fingerprint so derived is used as a reference to identify measured data during the operation of a CPS. Extensive experimentation with ultrasonic level sensors in a realistic water treatment testbed point to the effectiveness of the proposed fingerprinting method in detecting physical attacks.
Notions like security, trust, and privacy are crucial in the digital environment and in the future, with the advent of technologies like the Internet of Things (IoT) and Cyber-Physical Systems (CPS), their importance is only going to increase. Trust has different definitions, some situations rely on real-world relationships between entities while others depend on robust technologies to gain trust after deployment. In this paper we focus on these robust technologies, their evolution in past decades and their scope in the near future. The evolution of robust trust technologies has involved diverse approaches, as a consequence trust is defined, understood and ascertained differently across heterogeneous domains and technologies. In this paper we look at digital trust technologies from the point of view of security and examine how they are making secure computing an attainable reality. The paper also revisits and analyses the Trusted Platform Module (TPM), Secure Elements (SE), Hypervisors and Virtualisation, Intel TXT, Trusted Execution Environments (TEE) like GlobalPlatform TEE, Intel SGX, along with Host Card Emulation, and Encrypted Execution Environment (E3). In our analysis we focus on these technologies and their application to the emerging domains of the IoT and CPS.
As the number of small, battery-operated, wireless-enabled devices deployed in various applications of Internet of Things (IoT), Wireless Sensor Networks (WSN), and Cyber-physical Systems (CPS) is rapidly increasing, so is the number of data streams that must be processed. In cases where data do not need to be archived, centrally processed, or federated, in-network data processing is becoming more common. For this purpose, various platforms like DRAGON, Innet, and CJF were proposed. However, these platforms assume that all nodes in the network are the same, i.e. the network is homogeneous. As Moore's law still applies, nodes are becoming smaller, more powerful, and more energy efficient each year; which will continue for the foreseeable future. Therefore, we can expect that as sensor networks are extended and updated, hardware heterogeneity will soon be common in networks - the same trend as can be seen in cloud computing infrastructures. This heterogeneity introduces new challenges in terms of choosing an in-network data processing node, as not only its location, but also its capabilities, must be considered. This paper introduces a new methodology to tackle this challenge, comprising three new algorithms - Request, Traverse, and Mixed - for efficiently locating an in-network data processing node, while taking into account not only position within the network but also hardware capabilities. The proposed algorithms are evaluated against a naïve approach and achieve up to 90% reduction in network traffic during long-term data processing, while spending a similar amount time in the discovery phase.
We propose a methodology for architecture exploration for Cyber-Physical Systems (CPS) based on an iterative, optimization-based approach, where a discrete architecture selection engine is placed in a loop with a continuous sizing engine. The discrete optimization routine proposes a candidate architecture to the sizing engine. The sizing routine optimizes over the continuous parameters using simulation to evaluate the physical models and to monitor the requirements. To decrease the number of simulations, we show how balance equations and conservation laws can be leveraged to prune the discrete space, thus achieving significant reduction in the overall runtime. We demonstrate the effectiveness of our methodology on an industrial case study, namely an aircraft environmental control system, showing more than one order of magnitude reduction in optimization time.
In this paper, a new method for quantitative evaluation of the security of cyber-physical systems (CPSs) is proposed. The proposed method models the different classes of adversarial attacks against CPSs, including cross-domain attacks, i.e., cyber-to-cyber and cyber-to-physical attacks. It also takes the secondary consequences of attacks on CPSs into consideration. The intrusion process of attackers has been modeled using attack graph and the consequence estimation process of the attack has been investigated using process model. The security attributes and the special parameters involved in the security analysis of CPSs, have been identified and considered. The quantitative evaluation has been done using the probability of attacks, time-to-shutdown of the system and security risks. The validation phase of the proposed model is performed as a case study by applying it to a boiling water power plant and estimating the suitable security measures.
Feedback loss can severely degrade the overall system performance, in addition, it can affect the control and computation of the Cyber-physical Systems (CPS). CPS hold enormous potential for a wide range of emerging applications including stochastic and time-critical traffic patterns. Stochastic data has a randomness in its nature which make a great challenge to maintain the real-time control whenever the data is lost. In this paper, we propose a data recovery scheme, called the Efficient Temporal and Spatial Data Recovery (ETSDR) scheme for stochastic incomplete feedback of CPS. In this scheme, we identify the temporal model based on the traffic patterns and consider the spatial effect of the nearest neighbor. Numerical results reveal that the proposed ETSDR outperforms both the weighted prediction (WP) and the exponentially weighted moving average (EWMA) algorithm regardless of the increment percentage of missing data in terms of the root mean square error, the mean absolute error, and the integral of absolute error.
Cyber-physical systems (CPS) can potentially benefit a wide array of applications and areas. Here, the authors look at some of the challenges surrounding CPS, and consider a feasible solution for creating a robust, secure, and cost-effective architecture.
The interaction between information technology and phys ical world makes Cyber-Physical Systems (CPS) vulnerable to malicious attacks beyond the standard cyber attacks. This has motivated the need for attack-resilient state estimation. Yet, the existing state-estimators are based on the non-realistic assumption that the exact system model is known. Consequently, in this work we present a method for state estimation in presence of attacks, for systems with noise and modeling errors. When the the estimated states are used by a state-based feedback controller, we show that the attacker cannot destabilize the system by exploiting the difference between the model used for the state estimation and the real physical dynamics of the system. Furthermore, we describe how implementation issues such as jitter, latency and synchronization errors can be mapped into parameters of the state estimation procedure that describe modeling errors, and provide a bound on the state-estimation error caused by modeling errors. This enables mapping control performance requirements into real-time (i.e., timing related) specifications imposed on the underlying platform. Finally, we illustrate and experimentally evaluate this approach on an unmanned ground vehicle case-study.
The newly emerging cyber-physical systems (CPS) discover events from multiple, distributed sources with multiple levels of detail and heterogeneous data format, which may not be compare and integrate, and turn to hardly combined determination for action. While existing efforts have mainly focused on investigating a uniform CPS event representation with spatio-temporal attributes, in this paper we propose a new event model with two-layer structure, Basic Event Model (BEM) and Extended Information Set (EIS). A BEM could be extended with EIS by semantic adaptor for spatio-temporal and other attribution enhancement. In particular, we define the event process functions, like event attribution extraction and composition determination, for CPS action trigger exploit the Complex Event Process (CEP) engine Esper. Examples show that such event model provides several advantages in terms of extensibility, flexibility and heterogeneous support, and lay the foundations of event-based system design in CPS.
Multiple Security Domains Nondeducibility, MSDND, yields results even when the attack hides important information from electronic monitors and human operators. Because MSDND is based upon modal frames, it is able to analyze the event system as it progresses rather than relying on traces of the system. Not only does it provide results as the system evolves, MSDND can point out attacks designed to be missed in other security models. This work examines information flow disruption attacks such as Stuxnet and formally explains the role that implicit trust in the cyber security of a cyber physical system (CPS) plays in the success of the attack. The fact that the attack hides behind MSDND can be used to help secure the system by modifications to break MSDND and leave the attack nowhere to hide. Modal operators are defined to allow the manipulation of belief and trust states within the model. We show how the attack hides and uses the operator's trust to remain undetected. In fact, trust in the CPS is key to the success of the attack.
- « first
- ‹ previous
- 1
- 2
- 3
- 4