Xu, Zhengwei, Ge, Yuan, Cao, Jin, Yang, Shuquan, Lin, Qiyou, Zhou, Xu.
2021.
Robustness Analysis of Cyber-Physical Power System Based on Adjacent Matrix Evolution. 2021 China Automation Congress (CAC). :2104—2109.
Considering the influence of load, This paper proposes a robust analysis method of cyber-physical power system based on the evolution of adjacency matrix. This method uses the load matrix to detect whether the system has overload failure, utilizes the reachable matrix to detect whether the system has unconnected failure, and uses the dependency matrix to reveal the cascading failure mechanism in the system. Finally, analyze the robustness of the cyber-physical power system. The IEEE30 standard node system is taken as an example for simulation experiment, and introduced the connectivity index and the load loss ratio as evaluation indexes. The robustness of the system is evaluated and analyzed by comparing the variation curves of connectivity index and load loss ratio under different tolerance coefficients. The results show that the proposed method is feasible, reduces the complexity of graph-based attack methods, and easy to research and analyze.
Mbanaso, U. M., Makinde, J. A..
2021.
Conceptual Modelling of Criticality of Critical Infrastructure Nth Order Dependency Effect Using Neural Networks. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA). :127—131.
This paper presents conceptual modelling of the criticality of critical infrastructure (CI) nth order dependency effect using neural networks. Incidentally, critical infrastructures are usually not stand-alone, they are mostly interconnected in some way thereby creating a complex network of infrastructures that depend on each other. The relationships between these infrastructures can be either unidirectional or bidirectional with possible cascading or escalating effect. Moreover, the dependency relationships can take an nth order, meaning that a failure or disruption in one infrastructure can cascade to nth interconnected infrastructure. The nth-order dependency and criticality problems depict a sequential characteristic, which can result in chronological cyber effects. Consequently, quantifying the criticality of infrastructure demands that the impact of its failure or disruption on other interconnected infrastructures be measured effectively. To understand the complex relational behaviour of nth order relationships between infrastructures, we model the behaviour of nth order dependency using Neural Network (NN) to analyse the degree of dependency and criticality of the dependent infrastructure. The outcome, which is to quantify the Criticality Index Factor (CIF) of a particular infrastructure as a measure of its risk factor can facilitate a collective response in the event of failure or disruption. Using our novel NN approach, a comparative view of CIFs of infrastructures or organisations can provide an efficient mechanism for Critical Information Infrastructure Protection and resilience (CIIPR) in a more coordinated and harmonised way nationally. Our model demonstrates the capability to measure and establish the degree of dependency (or interdependency) and criticality of CIs as a criterion for a proactive CIIPR.