Visible to the public Biblio

Filters: Keyword is Instruments  [Clear All Filters]
2023-05-12
Hallajiyan, Mohammadreza, Doustmohammadi, Ali.  2022.  Min-Max-Based Resilient Consensus of Networked Control Systems. 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA). :1–5.
In this paper, we deal with the resilient consensus problem in networked control systems in which a group of agents are interacting with each other. A min-max-based resilient consensus algorithm has been proposed to help normal agents reach an agreement upon their state values in the presence of misbehaving ones. It is shown that the use of the developed algorithm will result in less computational load and fast convergence. Both synchronous and asynchronous update schemes for the network have been studied. Finally, the effectiveness of the proposed algorithm has been evaluated through numerical examples.
2023-04-14
Tikekar, Priyanka C., Sherekar, Swati S., Thakre, Vilas M..  2022.  An Approach for P2P Based Botnet Detection Using Machine Learning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :627–631.
The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
2023-03-31
Vikram, Aditya, Kumar, Sumit, Mohana.  2022.  Blockchain Technology and its Impact on Future of Internet of Things (IoT) and Cyber Security. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :444–447.
Due to Bitcoin's innovative block structure, it is both immutable and decentralized, making it a valuable tool or instrument for changing current financial systems. However, the appealing features of Bitcoin have also drawn the attention of cybercriminals. The Bitcoin scripting system allows users to include up to 80 bytes of arbitrary data in Bitcoin transactions, making it possible to store illegal information in the blockchain. This makes Bitcoin a powerful tool for obfuscating information and using it as the command-and-control infrastructure for blockchain-based botnets. On the other hand, Blockchain offers an intriguing solution for IoT security. Blockchain provides strong protection against data tampering, locks Internet of Things devices, and enables the shutdown of compromised devices within an IoT network. Thus, blockchain could be used both to attack and defend IoT networks and communications.
2023-02-03
Firdaus, Taufiq Maulana, Lubis, Fahdi Saidi, Lubis, Muharman.  2022.  Financial Technology Risk Analysis for Peer to Peer Lending Process: A Case Study of Sharia Aggregator Financial Technology. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :1–4.
Financial technology (Fintech) is an amalgamation of financial management using a technology system. Fintech has become a public concern because this service provides many service features to make it easier from the financial side, such as being used in cooperative financial institutions, banking and insurance. This paper will analyze the opportunities and challenges of Fintech sharia in Indonesia. By exploring the existing literature, this article will try to answer that question. This research is carried out using a literature review approach and comparative qualitative method which will determined the results of the SWOT analysis of sharia financial technology in indonesia. It is needed to mitigate risk of funding in a peer to peer method in overcoming the security of funds and data from investors, firstly companies can perform transparency on the clarity of investor funds. This is done as one of the facilities provided to investors in the Fintech application. In the future, it is hoped that in facing competition, sharia-based fintech companies must be able to provide targeted services through the socialization of sharia fintech to the public, both online and offline. Investors are expected to be more careful before investing in choosing Fintech Peer to Peer (P2P) Lending services by checking the list of Fintech lending and lending companies registered and found by the Financial Services Authority (OJK).
ISSN: 2770-159X
2023-01-13
Lobanok, Oleg, Promyslov, Vitaly, Semenkov, Kirill.  2022.  Safety-Driven Approach for Security Audit of I&C Systems of Nuclear Power Plants. 2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :545—550.
In this paper, we tried to summarize the practical experience of information security audits of nuclear power plants' automated process control system (I&C). The article presents a methodology for auditing the information security of instrumentation and control systems for nuclear power plants. The methodology was developed taking into account international and national Russian norms and rules and standards. The audit taxonomy, classification lifecycle are described. The taxonomy of information security audits shows that form, objectives of the I&C information security audit, and procedures can vary widely. A conceptual program is considered and discussed in details. The distinctive feature of the methodology is the mandatory consideration of the impact of information security on nuclear safety.
2022-12-23
Softić, Jasmin, Vejzović, Zanin.  2022.  Windows 10 Operating System: Vulnerability Assessment and Exploitation. 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH). :1–5.
The study focused on assessing and testing Windows 10 to identify possible vulnerabilities and their ability to withstand cyber-attacks. CVE data, alongside other vulnerability reports, were instrumental in measuring the operating system's performance. Metasploit and Nmap were essential in penetration and intrusion experiments in a simulated environment. The study applied the following testing procedure: information gathering, scanning and results analysis, vulnerability selection, launch attacks, and gaining access to the operating system. Penetration testing involved eight attacks, two of which were effective against the different Windows 10 versions. Installing the latest version of Windows 10 did not guarantee complete protection against attacks. Further research is essential in assessing the system's vulnerabilities are recommending better solutions.
ISSN: 2767-9470
2022-12-09
Pandey, Amit, Genale, Assefa Senbato, Janga, Vijaykumar, Sundaram, B. Barani, Awoke, Desalegn, Karthika, P..  2022.  Analysis of Efficient Network Security using Machine Learning in Convolutional Neural Network Methods. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :170—173.
Several excellent devices can communicate without the need for human intervention. It is one of the fastest-growing sectors in the history of computing, with an estimated 50 billion devices sold by the end of 2020. On the one hand, IoT developments play a crucial role in upgrading a few simple, intelligent applications that can increase living quality. On the other hand, the security concerns have been noted to the cross-cutting idea of frameworks and the multidisciplinary components connected with their organization. As a result, encryption, validation, access control, network security, and application security initiatives for gadgets and their inherent flaws cannot be implemented. It should upgrade existing security measures to ensure that the ML environment is sufficiently protected. Machine learning (ML) has advanced tremendously in the last few years. Machine insight has evolved from a research center curiosity to a sensible instrument in a few critical applications.
2022-10-20
King, James, Bendiab, Gueltoum, Savage, Nick, Shiaeles, Stavros.  2021.  Data Exfiltration: Methods and Detection Countermeasures. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :442—447.
Data exfiltration is of increasing concern throughout the world. The number of incidents and capabilities of data exfiltration attacks are growing at an unprecedented rate. However, such attack vectors have not been deeply explored in the literature. This paper aims to address this gap by implementing a data exfiltration methodology, detailing some data exfiltration methods. Groups of exfiltration methods are incorporated into a program that can act as a testbed for owners of any network that stores sensitive data. The implemented methods are tested against the well-known network intrusion detection system Snort, where all of them have been successfully evaded detection by its community rule sets. Thus, in this paper, we have developed new countermeasures to prevent and detect data exfiltration attempts using these methods.
2022-09-30
Selifanov, Valentin V., Doroshenko, Ivan E., Troeglazova, Anna V., Maksudov, Midat M..  2021.  Acceptable Variants Formation Methods of Organizational Structure and the Automated Information Security Management System Structure. 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). :631–635.
To ensure comprehensive information protection, it is necessary to use various means of information protection, distributed by levels and segments of the information system. This creates a contradiction, which consists in the presence of many different means of information protection and the inability to ensure their joint coordinated application in ensuring the protection of information due to the lack of an automated control system. One of the tasks that contribute to the solution of this problem is the task of generating a feasible organizational structure and the structure of such an automated control system, the results of which would provide these options and choose the one that is optimal under given initial parameters and limitations. The problem is solved by reducing the General task with particular splitting the original graph of the automated cyber defense control system into subgraphs. As a result, the organizational composition and the automated cyber defense management system structures will provide a set of acceptable variants, on the basis of which the optimal choice is made under the given initial parameters and restrictions. As a result, admissible variants for the formation technique of organizational structure and structure by the automated control system of cyber defense is received.
2022-07-29
Marchand-Niño, William-Rogelio, Samaniego, Hector Huamán.  2021.  Information Security Culture Model. A Case Study. 2021 XLVII Latin American Computing Conference (CLEI). :1–10.
This research covers the problem related to user behavior and its relationship with the protection of computer assets in terms of confidentiality, integrity, and availability. The main objective was to evaluate the relationship between the dimensions of awareness, compliance and appropriation of the information security culture and the asset protection variable, the ISCA diagnostic instrument was applied, and social engineering techniques were incorporated for this process. The results show the levels of awareness, compliance and appropriation of the university that was considered as a case study, these oscillate between the second and third level of four levels. Similarly, the performance regarding asset protection ranges from low to medium. It was concluded that there is a significant relationship between the variables of the investigation, verifying that of the total types of incidents registered in the study case, approximately 69% are associated with human behavior. As a contribution, an information security culture model was formulated whose main characteristic is a complementary diagnostic process between surveys and social engineering techniques, the model also includes the information security management system, risk management and security incident handling as part of the information security culture ecosystem in an enterprise.
2022-07-15
Figueiredo, Cainã, Lopes, João Gabriel, Azevedo, Rodrigo, Zaverucha, Gerson, Menasché, Daniel Sadoc, Pfleger de Aguiar, Leandro.  2021.  Software Vulnerabilities, Products and Exploits: A Statistical Relational Learning Approach. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :41—46.
Data on software vulnerabilities, products and exploits is typically collected from multiple non-structured sources. Valuable information, e.g., on which products are affected by which exploits, is conveyed by matching data from those sources, i.e., through their relations. In this paper, we leverage this simple albeit unexplored observation to introduce a statistical relational learning (SRL) approach for the analysis of vulnerabilities, products and exploits. In particular, we focus on the problem of determining the existence of an exploit for a given product, given information about the relations between products and vulnerabilities, and vulnerabilities and exploits, focusing on Industrial Control Systems (ICS), the National Vulnerability Database and ExploitDB. Using RDN-Boost, we were able to reach an AUC ROC of 0.83 and an AUC PR of 0.69 for the problem at hand. To reach that performance, we indicate that it is instrumental to include textual features, e.g., extracted from the description of vulnerabilities, as well as structured information, e.g., about product categories. In addition, using interpretable relational regression trees we report simple rules that shed insight on factors impacting the weaponization of ICS products.
2022-06-09
Trifonov, Roumen, Manolov, Slavcho, Yoshinov, Radoslav, Tsochev, Georgy, Pavlova, Galya.  2021.  Applying the Experience of Artificial Intelligence Methods for Information Systems Cyber Protection at Industrial Control Systems. 2021 25th International Conference on Circuits, Systems, Communications and Computers (CSCC). :21–25.
The rapid development of the Industry 4.0 initiative highlights the problems of Cyber-security of Industrial Computer Systems and, following global trends in Cyber Defense, the implementation of Artificial Intelligence instruments. The authors, having certain achievement in the implementation of Artificial Intelligence tools in Cyber Protection of Information Systems and, more precisely, creating and successfully experimenting with a hybrid model of Intrusion Detection and Prevention System (IDPS), decided to study and experiment with the possibility of applying a similar model to Industrial Control Systems. This raises the question: can the experience of applying Artificial Intelligence methods in Information Systems, where this development went beyond the experimental phase and has entered into the real implementation phase, be useful for experimenting with these methods in Industrial Systems.
2022-06-06
Lin, Kunli, Xia, Haojun, Zhang, Kun, Tu, Bibo.  2021.  AddrArmor: An Address-based Runtime Code-reuse Attack Mitigation for Shared Objects at the Binary-level. 2021 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :117–124.
The widespread adoption of DEP has made most modern attacks follow the same general steps: Attackers try to construct code-reuse attacks by using vulnerable indirect branch instructions in shared objects after successful exploits on memory vulnerabilities. In response to code-reuse attacks, researchers have proposed a large number of defenses. However, most of them require access to source code and/or specific hardware features. These limitations hinder the deployment of these defenses much.In this paper, we propose an address-based code-reuse attack mitigation for shared objects at the binary-level. We emphasize that the execution of indirect branch instruction must follow several principles we propose. More specifically, we first reconstruct function boundaries at the program’s dynamic-linking stage by combining shared object’s dynamic symbols with binary-level instruction analysis. We then leverage static instrumentation to hook vulnerable indirect branch instructions to a novel target address computation and validation routine. At runtime, AddrArmor will protect against code-reuse attacks based on the computed target address.Our experimental results show that AddrArmor provides a strong line of defense against code reuse attacks, and has an acceptable performance overhead of about 6.74% on average using SPEC CPU 2006.
2022-05-24
Aranha, Helder, Masi, Massimiliano, Pavleska, Tanja, Sellitto, Giovanni Paolo.  2021.  Securing the metrological chain in IoT environments: an architectural framework. 2021 IEEE International Workshop on Metrology for Industry 4.0 IoT (MetroInd4.0 IoT). :704–709.
The Internet of Things (IoT) paradigm, with its highly distributed and interconnected architecture, is gaining ground in Industry 4.0 and in critical infrastructures like the eHealth sector, the Smart Grid, Intelligent Power Plants and Smart Mobility. In these critical sectors, the preservation of metrological characteristics and their traceability is a strong legal requirement, just like cyber-security, since it offers the ground for liability. Any vulnerability in the system in which the metrological network is embedded can endanger human lives, the environment or entire economies. This paper presents a framework comprised of a methodology and some tools for the governance of the metrological chain. The proposed methodology combines the RAMI 4.0 model, which is a Reference Architecture used in the field of Industrial Internet of Things (IIoT), with the the Reference Model for Information Assurance & Security (RMIAS), a framework employed to guarantee information assurance and security, merging them with the well established paradigms to preserve calibration and referability of metrological instruments. Thus, metrological traceability and cyber-security are taken into account straight from design time, providing a conceptual space to achieve security by design and to support the maintenance of the metrological chain over the entire system lifecycle. The framework lends itself to be completely automatized with Model Checking to support automatic detection of non conformity and anomalies at run time.
2022-05-06
Kumar, Anuj.  2021.  Data Security and Privacy using DNA Cryptography and AES Method in Cloud Computing. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :1529—1535.
Cloud computing has changed how humans use their technological expertise. It indicates a transition in the use of computers as utilitarian instruments with radical applications in general. However, as technology advances, the number of hazards increases and crucial data protection has become increasingly challenging due to extensive internet use. Every day, new encryption methods are developed, and much research is carried out in the search for a reliable cryptographic algorithm. The AES algorithm employs an overly simplistic algebraic structure. Each block employs the same encryption scheme, and AES is subject to brute force and MITM attacks. AES have not provide d sufficient levels of security; the re is still a need to put further le vels of protection over them. In this regard, DNA cryptography allows you to encrypt a large quantity of data using only a few amount of DNA. This paper combines two methodologies, a DNA-based algorithm and the AES Algorithm, to provide a consi derably more secure data security platform. The DNA cryptography technology and the AES approach are utilized for data encryption and decryption. To improve cloud security, DNA cryptography and AES provide a technologically ideal option.
2022-04-19
Chen, Quan, Snyder, Peter, Livshits, Ben, Kapravelos, Alexandros.  2021.  Detecting Filter List Evasion with Event-Loop-Turn Granularity JavaScript Signatures. 2021 IEEE Symposium on Security and Privacy (SP). :1715–1729.

Content blocking is an important part of a per-formant, user-serving, privacy respecting web. Current content blockers work by building trust labels over URLs. While useful, this approach has many well understood shortcomings. Attackers may avoid detection by changing URLs or domains, bundling unwanted code with benign code, or inlining code in pages.The common flaw in existing approaches is that they evaluate code based on its delivery mechanism, not its behavior. In this work we address this problem by building a system for generating signatures of the privacy-and-security relevant behavior of executed JavaScript. Our system uses as the unit of analysis each script's behavior during each turn on the JavaScript event loop. Focusing on event loop turns allows us to build highly identifying signatures for JavaScript code that are robust against code obfuscation, code bundling, URL modification, and other common evasions, as well as handle unique aspects of web applications.This work makes the following contributions to the problem of measuring and improving content blocking on the web: First, we design and implement a novel system to build per-event-loop-turn signatures of JavaScript behavior through deep instrumentation of the Blink and V8 runtimes. Second, we apply these signatures to measure how much privacy-and-security harming code is missed by current content blockers, by using EasyList and EasyPrivacy as ground truth and finding scripts that have the same privacy and security harming patterns. We build 1,995,444 signatures of privacy-and-security relevant behaviors from 11,212 unique scripts blocked by filter lists, and find 3,589 unique scripts hosting known harmful code, but missed by filter lists, affecting 12.48% of websites measured. Third, we provide a taxonomy of ways scripts avoid detection and quantify the occurrence of each. Finally, we present defenses against these evasions, in the form of filter list additions where possible, and through a proposed, signature based system in other cases.As part of this work, we share the implementation of our signature-generation system, the data gathered by applying that system to the Alexa 100K, and 586 AdBlock Plus compatible filter list rules to block instances of currently blocked code being moved to new URLs.

Tronchin, Davide, Francescon, Roberto, Campagnaro, Filippo, Signori, Alberto, Petroccia, Roberto, Pelekanakis, Konstantinos, Paglierani, Pietro, Alves, João, Zorzi, Michele.  2021.  A Secure Cross-Layer Communication Stack for Underwater Acoustic Networks. OCEANS 2021: San Diego – Porto. :1–8.
Underwater Acoustic Networks (UANs) have long been recognized as an instrumental technology in various fields, from ocean monitoring to defense settings. Their security, though, has been scarcely investigated despite the strategic areas involved and the intrinsic vulnerability due to the broadcast nature of the wireless medium. In this work, we focus on attacks for which the attacker has partial or total knowledge of the network protocol stack. Our strategy uses a watchdog layer that allows upper layers to gather knowledge of overheard packets. In addition, a reputation system that is able to label nodes as trustful or suspicious is analyzed and evaluated via simulations. The proposed security mechanism has been implemented in the DESERT Underwater framework and a simulation study is conducted to validate the effectiveness of the proposed solution against resource exhaustion and sinkhole attacks.
2022-04-13
Hollerer, Siegfried, Kastner, Wolfgang, Sauter, Thilo.  2021.  Towards a Threat Modeling Approach Addressing Security and Safety in OT Environments. 2021 17th IEEE International Conference on Factory Communication Systems (WFCS). :37–40.
In Industry 4.0, Information Technology (IT) and Operational Technology (OT) tend to converge further with an increasing interdependence of safety and security issues to be considered. On one hand, cyber attacks are possible which can alter implemented safety functionality leading to situations where people are harmed, serious injuries may occur or the environment gets damaged. On the other side, safety can also impact security. For instance, the misuse of a Safety Instrumented System (SIS) may force a machine or a production line to shut down resulting in a denial of service. To prevent or mitigate risks from such scenarios, this paper proposes a threat modeling technique which addresses an integrated view on safety and security. The approach is tailored to the industrial automation domain considering plausible attacks and evaluating risks based on three different metrics. The metrics selected consist of Common Vulnerability Scoring System (CVSS) used as an international standard for rating cyber security vulnerabilities, Security Level (SL) from IEC 62443 to rate cyber security risks in OT environments w.r.t. the underlying architecture, and Safety Integrity Level (SIL) from IEC 61508 to rate safety risks. Due to the variety of use cases involving the chosen metrics, the approach is also feasible for followup analyses, such as integrated safety and security assessments or audits.
2022-03-23
Karimi, A., Ahmadi, A., Shahbazi, Z., Shafiee, Q., Bevrani, H..  2021.  A Resilient Control Method Against False Data Injection Attack in DC Microgrids. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). :1—6.

The expression of cyber-attacks on communication links in smart grids has emerged recently. In microgrids, cooperation between agents through communication links is required, thus, microgrids can be considered as cyber-physical-systems and they are vulnerable to cyber-attack threats. Cyber-attacks can cause damages in control systems, therefore, the resilient control methods are necessary. In this paper, a resilient control approach against false data injection attack is proposed for secondary control of DC microgrids. In the proposed framework, a PI controller with an adjustable gain is utilized to eliminate the injected false data. The proposed control method is employed for both sensor and link attacks. Convergence analysis of the measurement sensors and the secondary control objectives under the studied control method is performed. Finally, a DC microgrid with four units is built in Matlab/Simulink environment to verify the proposed approach.

2022-03-14
Kfoury, Elie, Crichigno, Jorge, Bou-Harb, Elias, Srivastava, Gautam.  2021.  Dynamic Router's Buffer Sizing using Passive Measurements and P4 Programmable Switches. 2021 IEEE Global Communications Conference (GLOBECOM). :01–06.
The router's buffer size imposes significant impli-cations on the performance of the network. Network operators nowadays configure the router's buffer size manually and stati-cally. They typically configure large buffers that fill up and never go empty, increasing the Round-trip Time (RTT) of packets significantly and decreasing the application performance. Few works in the literature dynamically adjust the buffer size, but are implemented only in simulators, and therefore cannot be tested and deployed in production networks with real traffic. Previous work suggested setting the buffer size to the Bandwidth-delay Product (BDP) divided by the square root of the number of long flows. Such formula is adequate when the RTT and the number of long flows are known in advance. This paper proposes a system that leverages programmable switches as passive instruments to measure the RTT and count the number of flows traversing a legacy router. Based on the measurements, the programmable switch dynamically adjusts the buffer size of the legacy router in order to mitigate the unnecessary large queuing delays. Results show that when the buffer is adjusted dynamically, the RTT, the loss rate, and the fairness among long flows are enhanced. Additionally, the Flow Completion Time (FCT) of short flows sharing the queue is greatly improved. The system can be adopted in campus, enterprise, and service provider networks, without the need to replace legacy routers.
2022-01-25
De Oliveira Nunes, Ivan, Jakkamsetti, Sashidhar, Tsudik, Gene.  2021.  Tiny-CFA: Minimalistic Control-Flow Attestation Using Verified Proofs of Execution. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :641–646.
The design of tiny trust anchors attracted much attention over the past decade, to secure low-end MCU-s that cannot afford more expensive security mechanisms. In particular, hardware/software (hybrid) co-designs offer low hardware cost, while retaining similar security guarantees as (more expensive) hardware-based techniques. Hybrid trust anchors support security services (such as remote attestation, proofs of software update/erasure/reset, and proofs of remote software execution) in resource-constrained MCU-s, e.g., MSP430 and AVR AtMega32. Despite these advances, detection of control-flow attacks in low-end MCU-s remains a challenge, since hardware requirements for the cheapest mitigation techniques are often more expensive than the MCU-s themselves. In this work, we tackle this challenge by designing Tiny-CFA - a Control-Flow Attestation (CFA) technique with a single hardware requirement - the ability to generate proofs of remote software execution (PoX). In turn, PoX can be implemented very efficiently and securely in low-end MCU-s. Consequently, our design achieves the lowest hardware overhead of any CFA technique, while relying on a formally verified PoX as its sole hardware requirement. With respect to runtime overhead, Tiny-CFA also achieves better performance than prior CFA techniques based on code instrumentation. We implement and evaluate Tiny-CFA, analyze its security, and demonstrate its practicality using real-world publicly available applications.
2022-01-10
Matsunami, Tomoaki, Uchida, Hidetsugu, Abe, Narishige, Yamada, Shigefumi.  2021.  Learning by Environment Clusters for Face Presentation Attack Detection. 2021 International Conference of the Biometrics Special Interest Group (BIOSIG). :1–5.
Face recognition has been used widely for personal authentication. However, there is a problem that it is vulnerable to a presentation attack in which a counterfeit such as a photo is presented to a camera to impersonate another person. Although various presentation attack detection methods have been proposed, these methods have not been able to sufficiently cope with the diversity of the heterogeneous environments including presentation attack instruments (PAIs) and lighting conditions. In this paper, we propose Learning by Environment Clusters (LEC) which divides training data into some clusters of similar photographic environments and trains bona-fide and attack classification models for each cluster. Experimental results using Replay-Attack, OULU-NPU, and CelebA-Spoof show the EER of the conventional method which trains one classification model from all data was 20.0%, but LEC can achieve 13.8% EER when using binarized statistical image features (BSIFs) and support vector machine used as the classification method.
2021-07-27
Dinesh, S., Burow, N., Xu, D., Payer, M..  2020.  RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization. 2020 IEEE Symposium on Security and Privacy (SP). :1497—1511.
Analyzing the security of closed source binaries is currently impractical for end-users, or even developers who rely on third-party libraries. Such analysis relies on automatic vulnerability discovery techniques, most notably fuzzing with sanitizers enabled. The current state of the art for applying fuzzing or sanitization to binaries is dynamic binary translation, which has prohibitive performance overhead. The alternate technique, static binary rewriting, cannot fully recover symbolization information and hence has difficulty modifying binaries to track code coverage for fuzzing or to add security checks for sanitizers.The ideal solution for binary security analysis would be a static rewriter that can intelligently add the required instrumentation as if it were inserted at compile time. Such instrumentation requires an analysis to statically disambiguate between references and scalars, a problem known to be undecidable in the general case. We show that recovering this information is possible in practice for the most common class of software and libraries: 64-bit, position independent code. Based on this observation, we develop RetroWrite, a binary-rewriting instrumentation to support American Fuzzy Lop (AFL) and Address Sanitizer (ASan), and show that it can achieve compiler-level performance while retaining precision. Binaries rewritten for coverage-guided fuzzing using RetroWrite are identical in performance to compiler-instrumented binaries and outperform the default QEMU-based instrumentation by 4.5x while triggering more bugs. Our implementation of binary-only Address Sanitizer is 3x faster than Valgrind's memcheck, the state-of-the-art binary-only memory checker, and detects 80% more bugs in our evaluation.
2021-07-08
Dovgalyuk, Pavel, Vasiliev, Ivan, Fursova, Natalia, Dmitriev, Denis, Abakumov, Mikhail, Makarov, Vladimir.  2020.  Non-intrusive Virtual Machine Analysis and Reverse Debugging with SWAT. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :196—203.
This paper presents SWAT - System-Wide Analysis Toolkit. It is based on open source emulation and debugging projects and implements the approaches for non-intrusive system-wide analysis and debugging: lightweight OS-agnostic virtual machine introspection, full system execution replay, non-intrusive debugging with WinDbg, and full system reverse debugging. These features are based on novel non-intrusive introspection and reverse debugging methods. They are useful for stealth debugging and analysis of the platforms with custom kernels. SWAT includes multi-platform emulator QEMU with additional instrumentation and debugging features, GUI for convenient QEMU setup and execution, QEMU plugin for non-intrusive introspection, and modified version of GDB. Our toolkit may be useful for the developers of the virtual platforms, emulators, and firmwares/drivers/operating systems. Virtual machine intospection approach does not require loading any guest agents and source code of the OS. Therefore it may be applied to ROM-based guest systems and enables using of record/replay of the system execution. This paper includes the description of SWAT components, analysis methods, and some SWAT use cases.
2021-05-13
Sun, Zhichuang, Feng, Bo, Lu, Long, Jha, Somesh.  2020.  OAT: Attesting Operation Integrity of Embedded Devices. 2020 IEEE Symposium on Security and Privacy (SP). :1433—1449.

Due to the wide adoption of IoT/CPS systems, embedded devices (IoT frontends) become increasingly connected and mission-critical, which in turn has attracted advanced attacks (e.g., control-flow hijacks and data-only attacks). Unfortunately, IoT backends (e.g., remote controllers or in-cloud services) are unable to detect if such attacks have happened while receiving data, service requests, or operation status from IoT devices (remotely deployed embedded devices). As a result, currently, IoT backends are forced to blindly trust the IoT devices that they interact with.To fill this void, we first formulate a new security property for embedded devices, called "Operation Execution Integrity" or OEI. We then design and build a system, OAT, that enables remote OEI attestation for ARM-based bare-metal embedded devices. Our formulation of OEI captures the integrity of both control flow and critical data involved in an operation execution. Therefore, satisfying OEI entails that an operation execution is free of unexpected control and data manipulations, which existing attestation methods cannot check. Our design of OAT strikes a balance between prover's constraints (embedded devices' limited computing power and storage) and verifier's requirements (complete verifiability and forensic assistance). OAT uses a new control-flow measurement scheme, which enables lightweight and space-efficient collection of measurements (97% space reduction from the trace-based approach). OAT performs the remote control-flow verification through abstract execution, which is fast and deterministic. OAT also features lightweight integrity checking for critical data (74% less instrumentation needed than previous work). Our security analysis shows that OAT allows remote verifiers or IoT backends to detect both controlflow hijacks and data-only attacks that affect the execution of operations on IoT devices. In our evaluation using real embedded programs, OAT incurs a runtime overhead of 2.7%.