Visible to the public Biblio

Filters: Keyword is DSP  [Clear All Filters]
2022-10-20
Rathor, Mahendra, Sarkar, Pallabi, Mishra, Vipul Kumar, Sengupta, Anirban.  2020.  Securing IP Cores in CE Systems using Key-driven Hash-chaining based Steganography. 2020 IEEE 10th International Conference on Consumer Electronics (ICCE-Berlin). :1—4.
Digital signal processor (DSP) intellectual property (IP) cores are the underlying hardware responsible for high performance data intensive applications. However an unauthorized IP vendor may counterfeit the DSP IPs and infuse them into the design-chain. Thus fake IPs or integrated circuits (ICs) are unknowingly integrated into consumer electronics (CE) systems, leading to reliability and safety issues for users. The latent solution to this threat is hardware steganography wherein vendor's secret information is covertly inserted into the design to enable detection of counterfeiting. A key-regulated hash-modules chaining based IP steganography is presented in our paper to secure against counterfeiting threat. The proposed approach yielded a robust steganography achieving very high security with regard to stego-key length than previous approaches.
2022-02-22
Xuguang, Zhu.  2021.  A Certainty-guaranteed inter/intra-core communication method for multi-core embedded systems. 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). :1024—1027.

In order to meet the actual needs of operating system localization and high-security operating system, this paper proposes a multi-core embedded high-security operating system inter-core communication mechanism centered on private memory on the core based on the cache mechanism of DSP processors such as Feiteng design. In order to apply it to the multi-core embedded high-security operating system, this paper also combines the priority scheduling scheme used in the design of our actual operating system to analyze the certainty of inter-core communication. The analysis result is: under this communication mechanism There is an upper limit for end-to-end delay, so the certainty of the communication mechanism is guaranteed and can be applied to multi-core high-security embedded operating systems.

2020-11-09
Rathor, M., Sengupta, A..  2019.  Enhanced Functional Obfuscation of DSP core using Flip-Flops and Combinational logic. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1–5.
Due to globalization of Integrated Circuit (IC) design flow, Intellectual Property (IP) cores have increasingly become susceptible to various hardware threats such as Trojan insertion, piracy, overbuilding etc. An IP core can be secured against these threats using functional obfuscation based security mechanism. This paper presents a functional obfuscation of digital signal processing (DSP) core for consumer electronics systems using a novel IP core locking block (ILB) logic that leverages the structure of flip-flops and combinational circuits. These ILBs perform the locking of the functionality of a DSP design and actuate the correct functionality only on application of a valid key sequence. In existing approaches so far, executing exhaustive trials are sufficient to extract the valid keys from an obfuscated design. However, proposed work is capable of hindering the extraction of valid keys even on exhaustive trials, unless successfully applied in the first attempt only. In other words, the proposed work drastically reduces the probability of obtaining valid key of a functionally obfuscated design in exhaustive trials. Experimental results indicate that the proposed approach achieves higher security and lower design overhead than previous works.
Sengupta, A., Gupta, G., Jalan, H..  2019.  Hardware Steganography for IP Core Protection of Fault Secured DSP Cores. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1–6.
Security of transient fault secured IP cores against piracy, false claim of ownership can be achieved during high level synthesis, especially when handling DSP or multimedia cores. Though watermarking that involves implanting a vendor defined signature onto the design can be useful, however research has shown its limitations such as less designer control, high overhead due to extreme dependency on signature size, combination and encoding rule. This paper proposes an alternative paradigm called `hardware steganography' where hidden additional designer's constraints are implanted in a fault secured IP core using entropy thresholding. In proposed hardware steganography, concealed information in the form of additional edges having a specific entropy value is embedded in the colored interval graph (CIG). This is a signature free approach and ensures high designer control (more robustness and stronger proof of authorship) as well as lower overhead than watermarking schemes used for DSP based IP cores.
2020-11-02
Sengupta, Anirban, Chandra, N. Prajwal, Kumar, E. Ranjith.  2019.  Robust Digital Signature to Protect IP Core against Fraudulent Ownership and Cloning. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1—3.

Digital signal processing (DSP) and multimedia based reusable Intellectual property (IP) cores form key components of system-on-chips used in consumer electronic devices. They represent years of valuable investment and hence need protection against prevalent threats such as IP cloning and fraudulent claim of ownership. This paper presents a novel crypto digital signature approach which incorporates multiple security modules such as encryption, hashing and encoding for protection of digital signature processing cores. The proposed approach achieves higher robustness (and reliability), in terms of lower probability of coincidence, at lower design cost than existing watermarking approaches for IP cores. The proposed approach achieves stronger proof of authorship (on average by 39.7%) as well as requires lesser storage hardware compared to a recent similar work.

2020-08-03
Walczyński, Maciej, Ryba, Dagmara.  2019.  Effectiveness of the acoustic fingerprint in various acoustical environments. 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). :137–141.
In this article analysis of the effectiveness of the acoustic algorithm of the fingerprint in the conditions of various acoustic disturbances is presented and described. The described algorithm is stable and should identify music even in the presence of acoustic disturbances. This was checked in a series of tests in four different conditions: silence, street noise, noise from the railway station, noise from inside the moving car during rain. In the case of silence, 10 measurements were taken lasting 7 seconds each. For each of the remaining conditions, 21 attempts were made to identify the work. The capture time for each of the 21 trials was 7 seconds. Every 7 attempts were changed noise volume. Subsequently, they were disruptions at a volume lower than the volume of the intercepted song, another 7 with an altitude similar to the intercepted track, and the last with a much higher volume. The effectiveness of the algorithm was calculated for two different times, and general - for the average of two results. Base of "fingerprints" consisted of 20 previously analyzed music pieces belonging to different musical genres.
2020-02-17
Shukla, Meha, Johnson, Shane D., Jones, Peter.  2019.  Does the NIS implementation strategy effectively address cyber security risks in the UK? 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–11.
This research explored how cyber security risks are managed across UK Critical National Infrastructure (CNI) sectors following implementation of the 2018 Networks and Information Security (NIS) legislation. Being in its infancy, there has been limited study into the effectiveness of this national framework for cyber risk management. The analysis of data gathered through interviews with key stakeholders against the NIS objectives indicated a collaborative implementation approach to improve cyber-risk management capabilities in CNI sectors. However, more work is required to bridge the gaps in the NIS framework to ensure holistic security across cyber spaces as well as non-cyber elements: cyber-physical security, cross-sector CNI service security measures, outcome-based regulatory assessments and risks due to connected smart technology implementations alongside legacy systems. This paper proposes ten key recommendations to counter the danger of not meeting the NIS key strategic objectives. In particular, it recommends that the approach to NIS implementation needs further alignment with its objectives, such as bringing a step-change in the cyber-security risk management capabilities of the CNI sectors.
2018-02-21
Kinsy, M. A., Khadka, S., Isakov, M., Farrukh, A..  2017.  Hermes: Secure heterogeneous multicore architecture design. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :14–20.

The emergence of general-purpose system-on-chip (SoC) architectures has given rise to a number of significant security challenges. The current trend in SoC design is system-level integration of heterogeneous technologies consisting of a large number of processing elements such as programmable RISC cores, memory, DSPs, and accelerator function units/ASIC. These processing elements may come from different providers, and application executable code may have varying levels of trust. Some of the pressing architecture design questions are: (1) how to implement multi-level user-defined security; (2) how to optimally and securely share resources and data among processing elements. In this work, we develop a secure multicore architecture, named Hermes. It represents a new architectural framework that integrates multiple processing elements (called tenants) of secure and non-secure cores into the same chip design while (a) maintaining individual tenant security, (b) preventing data leakage and corruption, and (c) promoting collaboration among the tenants. The Hermes architecture is based on a programmable secure router interface and a trust-aware routing algorithm. With 17% hardware overhead, it enables the implementation of processing-element-oblivious secure multicore systems with a programmable distributed group key management scheme.