Visible to the public Biblio

Filters: Keyword is information dissemination  [Clear All Filters]
2020-12-02
Wang, Q., Zhao, W., Yang, J., Wu, J., Hu, W., Xing, Q..  2019.  DeepTrust: A Deep User Model of Homophily Effect for Trust Prediction. 2019 IEEE International Conference on Data Mining (ICDM). :618—627.

Trust prediction in online social networks is crucial for information dissemination, product promotion, and decision making. Existing work on trust prediction mainly utilizes the network structure or the low-rank approximation of a trust network. These approaches can suffer from the problem of data sparsity and prediction accuracy. Inspired by the homophily theory, which shows a pervasive feature of social and economic networks that trust relations tend to be developed among similar people, we propose a novel deep user model for trust prediction based on user similarity measurement. It is a comprehensive data sparsity insensitive model that combines a user review behavior and the item characteristics that this user is interested in. With this user model, we firstly generate a user's latent features mined from user review behavior and the item properties that the user cares. Then we develop a pair-wise deep neural network to further learn and represent these user features. Finally, we measure the trust relations between a pair of people by calculating the user feature vector cosine similarity. Extensive experiments are conducted on two real-world datasets, which demonstrate the superior performance of the proposed approach over the representative baseline works.

2020-11-20
Sarochar, J., Acharya, I., Riggs, H., Sundararajan, A., Wei, L., Olowu, T., Sarwat, A. I..  2019.  Synthesizing Energy Consumption Data Using a Mixture Density Network Integrated with Long Short Term Memory. 2019 IEEE Green Technologies Conference(GreenTech). :1—4.
Smart cities comprise multiple critical infrastructures, two of which are the power grid and communication networks, backed by centralized data analytics and storage. To effectively model the interdependencies between these infrastructures and enable a greater understanding of how communities respond to and impact them, large amounts of varied, real-world data on residential and commercial consumer energy consumption, load patterns, and associated human behavioral impacts are required. The dissemination of such data to the research communities is, however, largely restricted because of security and privacy concerns. This paper creates an opportunity for the development and dissemination of synthetic energy consumption data which is inherently anonymous but holds similarities to the properties of real data. This paper explores a framework using mixture density network (MDN) model integrated with a multi-layered Long Short-Term Memory (LSTM) network which shows promise in this area of research. The model is trained using an initial sample recorded from residential smart meters in the state of Florida, and is used to generate fully synthetic energy consumption data. The synthesized data will be made publicly available for interested users.
2020-05-22
Devarakonda, Ranjeet, Giansiracusa, Michael, Kumar, Jitendra.  2018.  Machine Learning and Social Media to Mine and Disseminate Big Scientific Data. 2018 IEEE International Conference on Big Data (Big Data). :5312—5315.

One of the challenges in supplying the communities with wider access to scientific databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it might not be practical to make the public aware of the structure of databases. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide a more intuitive method for generating database queries and delivering responses. Through social media, which makes it possible to interact with a wide section of the population, and with the help of natural language processing, researchers at the Atmospheric Radiation Measurement (ARM) Data Center at Oak Ridge National Laboratory (ORNL) have developed a concept to enable easy search and retrieval of data from several environmental data centers for the scientific community through social media.Using a machine learning framework that maps natural language text to thousands of datasets, instruments, variables, and data streams, the prototype system would allow users to request data through Twitter and receive a link (via tweet) to applicable data results on the project's search catalog tailored to their key words. This automated identification of relevant data from various petascale archives at ORNL could increase convenience, access, and use of the project's data by the broader community. In this paper we discuss how some data-intensive projects at ORNL are using innovative ways to help in data discovery.

2020-02-26
Dhanya, K., Jeyalakshmi, C., Balakumar, A..  2019.  A Secure Autonomic Mobile Ad-Hoc Network Based Trusted Routing Proposal. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.

This research proposes an inspection on Trust Based Routing protocols to protect Internet of Things directing to authorize dependability and privacy amid to direction-finding procedure in inaccessible systems. There are number of Internet of Things (IOT) gadgets are interrelated all inclusive, the main issue is the means by which to protect the routing of information in the important systems from different types of stabbings. Clients won't feel secure on the off chance that they know their private evidence could without much of a stretch be gotten to and traded off by unapproved people or machines over the system. Trust is an imperative part of Internet of Things (IOT). It empowers elements to adapt to vulnerability and roughness caused by the through and through freedom of other devices. In Mobile Ad-hoc Network (MANET) host moves frequently in any bearing, so that the topology of the network also changes frequently. No specific algorithm is used for routing the packets. Packets/data must be routed by intermediate nodes. It is procumbent to different occurrences ease. There are various approaches to compute trust for a node such as fuzzy trust approach, trust administration approach, hybrid approach, etc. Adaptive Information Dissemination (AID) is a mechanism which ensures the packets in a specific transmission and it analysis of is there any attacks by hackers.It encompasses of ensuring the packet count and route detection between source and destination with trusted path.Trust estimation dependent on the specific condition or setting of a hub, by sharing the setting information onto alternate hubs in the framework would give a superior answer for this issue.Here we present a survey on various trust organization approaches in MANETs. We bring out instantaneous of these approaches for establishing trust of the partaking hubs in a dynamic and unverifiable MANET atmosphere.

2019-08-05
Ahmad, F., Adnane, A., KURUGOLLU, F., Hussain, R..  2019.  A Comparative Analysis of Trust Models for Safety Applications in IoT-Enabled Vehicular Networks. 2019 Wireless Days (WD). :1-8.
Vehicular Ad-hoc NETwork (VANET) is a vital transportation technology that facilitates the vehicles to share sensitive information (such as steep-curve warnings and black ice on the road) with each other and with the surrounding infrastructure in real-time to avoid accidents and enable comfortable driving experience.To achieve these goals, VANET requires a secure environment for authentic, reliable and trusted information dissemination among the network entities. However, VANET is prone to different attacks resulting in the dissemination of compromised/false information among network nodes. One way to manage a secure and trusted network is to introduce trust among the vehicular nodes. To this end, various Trust Models (TMs) are developed for VANET and can be broadly categorized into three classes, Entity-oriented Trust Models (ETM), Data oriented Trust Models (DTM) and Hybrid Trust Models (HTM). These TMs evaluate trust based on the received information (data), the vehicle (entity) or both through different mechanisms. In this paper, we present a comparative study of the three TMs. Furthermore, we evaluate these TMs against the different trust, security and quality-of-service related benchmarks. Simulation results revealed that all these TMs have deficiencies in terms of end-to-end delays, event detection probabilities and false positive rates. This study can be used as a guideline for researchers to design new efficient and effective TMs for VANET.
2018-12-10
Farooq, M. J., Zhu, Q..  2017.  Secure and reconfigurable network design for critical information dissemination in the Internet of battlefield things (IoBT). 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). :1–8.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas such as smart homes, smart cities, health care, transportation, etc. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to the battlefield specific challenges such as the absence of communication infrastructure, and the susceptibility of devices to cyber and physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and the information dissemination in the presence of adversaries. This work aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to study the communication of mission-critical data among different types of network devices and consequently design the network in a cost effective manner.

Farooq, M. J., Zhu, Q..  2018.  On the Secure and Reconfigurable Multi-Layer Network Design for Critical Information Dissemination in the Internet of Battlefield Things (IoBT). IEEE Transactions on Wireless Communications. 17:2618–2632.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas, such as smart homes, smart cities, health care, and transportation. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to battlefield specific challenges, such as the absence of communication infrastructure, heterogeneity of devices, and susceptibility to cyber-physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and information dissemination in the presence of adversaries. This paper aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to quantify the information dissemination among heterogeneous network devices. Consequently, a tractable optimization problem is formulated that can assist commanders in cost effectively planning the network and reconfiguring it according to the changing mission requirements.

2015-05-05
Srivastava, M..  2014.  In Sensors We Trust – A Realistic Possibility? Distributed Computing in Sensor Systems (DCOSS), 2014 IEEE International Conference on. :1-1.

Sensors of diverse capabilities and modalities, carried by us or deeply embedded in the physical world, have invaded our personal, social, work, and urban spaces. Our relationship with these sensors is a complicated one. On the one hand, these sensors collect rich data that are shared and disseminated, often initiated by us, with a broad array of service providers, interest groups, friends, and family. Embedded in this data is information that can be used to algorithmically construct a virtual biography of our activities, revealing intimate behaviors and lifestyle patterns. On the other hand, we and the services we use, increasingly depend directly and indirectly on information originating from these sensors for making a variety of decisions, both routine and critical, in our lives. The quality of these decisions and our confidence in them depend directly on the quality of the sensory information and our trust in the sources. Sophisticated adversaries, benefiting from the same technology advances as the sensing systems, can manipulate sensory sources and analyze data in subtle ways to extract sensitive knowledge, cause erroneous inferences, and subvert decisions. The consequences of these compromises will only amplify as our society increasingly complex human-cyber-physical systems with increased reliance on sensory information and real-time decision cycles.Drawing upon examples of this two-faceted relationship with sensors in applications such as mobile health and sustainable buildings, this talk will discuss the challenges inherent in designing a sensor information flow and processing architecture that is sensitive to the concerns of both producers and consumer. For the pervasive sensing infrastructure to be trusted by both, it must be robust to active adversaries who are deceptively extracting private information, manipulating beliefs and subverting decisions. While completely solving these challenges would require a new science of resilient, secure and trustworthy networked sensing and decision systems that would combine hitherto disciplines of distributed embedded systems, network science, control theory, security, behavioral science, and game theory, this talk will provide some initial ideas. These include an approach to enabling privacy-utility trade-offs that balance the tension between risk of information sharing to the producer and the value of information sharing to the consumer, and method to secure systems against physical manipulation of sensed information.
 

2015-04-30
Srivastava, M..  2014.  In Sensors We Trust – A Realistic Possibility? Distributed Computing in Sensor Systems (DCOSS), 2014 IEEE International Conference on. :1-1.

Sensors of diverse capabilities and modalities, carried by us or deeply embedded in the physical world, have invaded our personal, social, work, and urban spaces. Our relationship with these sensors is a complicated one. On the one hand, these sensors collect rich data that are shared and disseminated, often initiated by us, with a broad array of service providers, interest groups, friends, and family. Embedded in this data is information that can be used to algorithmically construct a virtual biography of our activities, revealing intimate behaviors and lifestyle patterns. On the other hand, we and the services we use, increasingly depend directly and indirectly on information originating from these sensors for making a variety of decisions, both routine and critical, in our lives. The quality of these decisions and our confidence in them depend directly on the quality of the sensory information and our trust in the sources. Sophisticated adversaries, benefiting from the same technology advances as the sensing systems, can manipulate sensory sources and analyze data in subtle ways to extract sensitive knowledge, cause erroneous inferences, and subvert decisions. The consequences of these compromises will only amplify as our society increasingly complex human-cyber-physical systems with increased reliance on sensory information and real-time decision cycles.Drawing upon examples of this two-faceted relationship with sensors in applications such as mobile health and sustainable buildings, this talk will discuss the challenges inherent in designing a sensor information flow and processing architecture that is sensitive to the concerns of both producers and consumer. For the pervasive sensing infrastructure to be trusted by both, it must be robust to active adversaries who are deceptively extracting private information, manipulating beliefs and subverting decisions. While completely solving these challenges would require a new science of resilient, secure and trustworthy networked sensing and decision systems that would combine hitherto disciplines of distributed embedded systems, network science, control theory, security, behavioral science, and game theory, this talk will provide some initial ideas. These include an approach to enabling privacy-utility trade-offs that balance the tension between risk of information sharing to the producer and the value of information sharing to the consumer, and method to secure systems against physical manipulation of sensed information.