Biblio
Various research efforts have focused on the problem of customer privacy protection in the smart grid arising from the large deployment of smart energy meters. In fact, the deployed smart meters distribute accurate profiles of home energy use, which can reflect the consumers' behaviour. This paper proposes a privacy-preserving lattice-based homomorphic aggregation scheme. In this approach, the smart household appliances perform the data aggregation while the smart meter works as relay node. Its role is to authenticate the exchanged messages between the home area network appliances and the related gateway. Security analysis show that our scheme guarantees consumer privacy and messages confidentiality and integrity in addition to its robustness against several attacks. Experimental results demonstrate the efficiency of our proposed approach in terms of communication complexity.
The roll-out of smart meters (SMs) in the electric grid has enabled data-driven grid management and planning techniques. SM data can be used together with short-term load forecasts (STLFs) to overcome polling frequency constraints for better grid management. However, the use of SMs that report consumption data at high spatial and temporal resolutions entails consumer privacy risks, motivating work in protecting consumer privacy. The impact of privacy protection schemes on STLF accuracy is not well studied, especially for smaller aggregations of consumers, whose load profiles are subject to more volatility and are, thus, harder to predict. In this paper, we analyse the impact of two user demand shaping privacy protection schemes, model-distribution predictive control (MDPC) and load-levelling, on STLF accuracy. Support vector regression is used to predict the load profiles at different consumer aggregation levels. Results indicate that, while the MDPC algorithm marginally affects forecast accuracy for smaller consumer aggregations, this diminishes at higher aggregation levels. More importantly, the load-levelling scheme significantly improves STLF accuracy as it smoothens out the grid visible consumer load profile.
The Named Data Network (NDN) is a promising network paradigm for content distribution based on caching. However, it may put consumer privacy at risk, as the adversary may identify the content, the name and the signature (namely a certificate) through side-channel timing responses from the cache of the routers. The adversary may identify the content name and the consumer node by distinguishing between cached and un- cached contents. In order to mitigate the timing attack, effective countermeasure methods have been proposed by other authors, such as random caching, random freshness, and probabilistic caching. In this work, we have implemented a timing attack scenario to evaluate the efficiency of these countermeasures and to demonstrate how the adversary can be detected. For this goal, a brute force timing attack scenario based on a real topology was developed, which is the first brute force attack model applied in NDN. Results show that the adversary nodes can be effectively distinguished from other legitimate consumers during the attack period. It is also proposed a multi-level mechanism to detect an adversary node. Through this approach, the content distribution performance can be mitigated against the attack.
A successful Smart Grid system requires purpose-built security architecture which is explicitly designed to protect customer data confidentiality. In addition to the investment on electric power infrastructure for protecting the privacy of Smart Grid-related data, entities need to actively participate in the NIST interoperability framework process; establish policies and oversight structure for the enforcement of cyber security controls of the data through adoption of security best practices, personnel training, cyber vulnerability assessments, and consumer privacy audits.
The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.
The collection of high frequency metering data in the emerging smart grid gives rise to the concern of consumer privacy. Anonymization of metering data is one of the proposed approaches in the literature, which enables transmission of unmasked data while preserving the privacy of the sender. Distributed anonymization methods can reduce the dependency on service providers, thus promising more privacy for the consumers. However, the distributed communication among the end-users introduces overhead and requires methods to prevent external attacks. In this paper, we propose four variants of a distributed anonymization method for smart metering data privacy, referred to as the Collaborative Anonymity Set Formation (CASF) method. The performance overhead analysis and security analysis of the variants are done using NS-3 simulator and the Scyther tool, respectively. It is shown that the proposed scheme enhances the privacy preservation functionality of an existing anonymization scheme, while being robust against external attacks.
Advanced Metering Infrastructure (AMI) have rapidly become a topic of international interest as governments have sponsored their deployment for the purposes of utility service reliability and efficiency, e.g., water and electricity conservation. Two problems plague such deployments. First is the protection of consumer privacy. Second is the problem of huge amounts of data from such deployments. A new architecture is proposed to address these problems through the use of Aggregators, which incorporate temporary data buffering and the modularization of utility grid analysis. These Aggregators are used to deliver anonymized summary data to the central utility while preserving billing and automated connection services.