Visible to the public Biblio

Found 12044 results

Filters: Keyword is Resiliency  [Clear All Filters]
2017-04-24
Multari, Nicholas J., Singhal, Anoop, Manz, David O., Cowles, Robert, Cuellar, Jorge, Oehmen, Christopher, Shannon, Gregory.  2016.  SafeConfig'16: Testing and Evaluation for Active & Resilient Cyber Systems Panel Verification of Active and Resilient Systems: Practical or Utopian? Proceedings of the 2016 ACM Workshop on Automated Decision Making for Active Cyber Defense. :53–53.

The premise of the SafeConfig'16 Workshop is existing tools and methods for security assessments are necessary but insufficient for scientifically rigorous testing and evaluation of resilient and active cyber systems. The objective for this workshop is the exploration and discussion of scientifically sound testing regimen(s) that will continuously and dynamically probe, attack, and "test" the various resilient and active technologies. This adaptation and change in focus necessitates at the very least modification, and potentially, wholesale new developments to ensure that resilient- and agile-aware security testing is available to the research community. All testing, validation and experimentation must also be repeatable, reproducible, subject to scientific scrutiny, measurable and meaningful to both researchers and practitioners. The workshop will convene a panel of experts to explore this concept. The topic will be discussed from three different perspectives. One perspective is that of the practitioner. We will explore whether active and resilient technologies are or are planned for deployment and whether the verification methodology affects that decision. The second perspective will be that of the research community. We will address the shortcomings of current approaches and the research directions needed to address the practitioner's concerns. The third perspective is that of the policy community. Specifically, we will explore the dynamics between technology, verification, and policy.

Dubey, Abhishek, Pradhan, Subhav, Schmidt, Douglas C., Rusitschka, Sebnem, Sturm, Monika.  2016.  The Role of Context and Resilient Middleware in Next Generation Smart Grids. Proceedings of the 3rd Workshop on Middleware for Context-Aware Applications in the IoT. :1–6.

The emerging trends of volatile distributed energy resources and micro-grids are putting pressure on electrical power system infrastructure. This pressure is motivating the integration of digital technology and advanced power-industry practices to improve the management of distributed electricity generation, transmission, and distribution, thereby creating a web of systems. Unlike legacy power system infrastructure, however, this emerging next-generation smart grid should be context-aware and adaptive to enable the creation of applications needed to enhance grid robustness and efficiency. This paper describes key factors that are driving the architecture of smart grids and describes orchestration middleware needed to make the infrastructure resilient. We use an example of adaptive protection logic in smart grid substations as a use case to motivate the need for contextawareness and adaptivity.

Ye, Conghuan, Ling, Hefei, Xiong, Zenggang, Zou, Fuhao, Liu, Cong, Xu, Fang.  2016.  Secure Social Multimedia Big Data Sharing Using Scalable JFE in the TSHWT Domain. ACM Trans. Multimedia Comput. Commun. Appl.. 12:61:1–61:23.

With the advent of social networks and cloud computing, the amount of multimedia data produced and communicated within social networks is rapidly increasing. In the meantime, social networking platforms based on cloud computing have made multimedia big data sharing in social networks easier and more efficient. The growth of social multimedia, as demonstrated by social networking sites such as Facebook and YouTube, combined with advances in multimedia content analysis, underscores potential risks for malicious use, such as illegal copying, piracy, plagiarism, and misappropriation. Therefore, secure multimedia sharing and traitor tracing issues have become critical and urgent in social networks. In this article, a joint fingerprinting and encryption (JFE) scheme based on tree-structured Haar wavelet transform (TSHWT) is proposed with the purpose of protecting media distribution in social network environments. The motivation is to map hierarchical community structure of social networks into a tree structure of Haar wavelet transform for fingerprinting and encryption. First, fingerprint code is produced using social network analysis (SNA). Second, the content is decomposed based on the structure of fingerprint code by the TSHWT. Then, the content is fingerprinted and encrypted in the TSHWT domain. Finally, the encrypted contents are delivered to users via hybrid multicast-unicast. The proposed method, to the best of our knowledge, is the first scalable JFE method for fingerprinting and encryption in the TSHWT domain using SNA. The use of fingerprinting along with encryption using SNA not only provides a double layer of protection for social multimedia sharing in social network environment but also avoids big data superposition effect. Theory analysis and experimental results show the effectiveness of the proposed JFE scheme.

Jonker, Mattijs, Sperotto, Anna, van Rijswijk-Deij, Roland, Sadre, Ramin, Pras, Aiko.  2016.  Measuring the Adoption of DDoS Protection Services. Proceedings of the 2016 Internet Measurement Conference. :279–285.

Distributed Denial-of-Service (DDoS) attacks have steadily gained in popularity over the last decade, their intensity ranging from mere nuisance to severe. The increased number of attacks, combined with the loss of revenue for the targets, has given rise to a market for DDoS Protection Service (DPS) providers, to whom victims can outsource the cleansing of their traffic by using traffic diversion. In this paper, we investigate the adoption of cloud-based DPSs worldwide. We focus on nine leading providers. Our outlook on adoption is made on the basis of active DNS measurements. We introduce a methodology that allows us, for a given domain name, to determine if traffic diversion to a DPS is in effect. It also allows us to distinguish various methods of traffic diversion and protection. For our analysis we use a long-term, large-scale data set that covers well over 50\textbackslash% of all names in the global domain namespace, in daily snapshots, over a period of 1.5 years. Our results show that DPS adoption has grown by 1.24x in our measurement period, a prominent trend compared to the overall expansion of the namespace. Our study also reveals that adoption is often lead by big players such as large Web hosters, which activate or deactivate DDoS protection for millions of domain names at once.

Qin, Zhan, Yan, Jingbo, Ren, Kui, Chen, Chang Wen, Wang, Cong.  2016.  SecSIFT: Secure Image SIFT Feature Extraction in Cloud Computing. ACM Trans. Multimedia Comput. Commun. Appl.. 12:65:1–65:24.

The image and multimedia data produced by individuals and enterprises is increasing every day. Motivated by the advances in cloud computing, there is a growing need to outsource such computational intensive image feature detection tasks to cloud for its economic computing resources and on-demand ubiquitous access. However, the concerns over the effective protection of private image and multimedia data when outsourcing it to cloud platform become the major barrier that impedes the further implementation of cloud computing techniques over massive amount of image and multimedia data. To address this fundamental challenge, we study the state-of-the-art image feature detection algorithms and focus on Scalar Invariant Feature Transform (SIFT), which is one of the most important local feature detection algorithms and has been broadly employed in different areas, including object recognition, image matching, robotic mapping, and so on. We analyze and model the privacy requirements in outsourcing SIFT computation and propose Secure Scalar Invariant Feature Transform (SecSIFT), a high-performance privacy-preserving SIFT feature detection system. In contrast to previous works, the proposed design is not restricted by the efficiency limitations of current homomorphic encryption scheme. In our design, we decompose and distribute the computation procedures of the original SIFT algorithm to a set of independent, co-operative cloud servers and keep the outsourced computation procedures as simple as possible to avoid utilizing a computationally expensive homomorphic encryption scheme. The proposed SecSIFT enables implementation with practical computation and communication complexity. Extensive experimental results demonstrate that SecSIFT performs comparably to original SIFT on image benchmarks while capable of preserving the privacy in an efficient way.

Tall, Anne, Wang, Jun, Han, Dezhi.  2016.  Survey of Data Intensive Computing Technologies Application to to Security Log Data Management. Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. :268–273.

Data intensive computing research and technology developments offer the potential of providing significant improvements in several security log management challenges. Approaches to address the complexity, timeliness, expense, diversity, and noise issues have been identified. These improvements are motivated by the increasingly important role of analytics. Machine learning and expert systems that incorporate attack patterns are providing greater detection insights. Finding actionable indicators requires the analysis to combine security event log data with other network data such and access control lists, making the big-data problem even bigger. Automation of threat intelligence is recognized as not complete with limited adoption of standards. With limited progress in anomaly signature detection, movement towards using expert systems has been identified as the path forward. Techniques focus on matching behaviors of attackers to patterns of abnormal activity in the network. The need to stream, parse, and analyze large volumes of small, semi-structured data files can be feasibly addressed through a variety of techniques identified by researchers. This report highlights research in key areas, including protection of the data, performance of the systems and network bandwidth utilization.

Pasquier, Thomas, Bacon, Jean, Singh, Jatinder, Eyers, David.  2016.  Data-Centric Access Control for Cloud Computing. Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies. :81–88.

The usual approach to security for cloud-hosted applications is strong separation. However, it is often the case that the same data is used by different applications, particularly given the increase in data-driven (`big data' and IoT) applications. We argue that access control for the cloud should no longer be application-specific but should be data-centric, associated with the data that can flow between applications. Indeed, the data may originate outside cloud services from diverse sources such as medical monitoring, environmental sensing etc. Information Flow Control (IFC) potentially offers data-centric, system-wide data access control. It has been shown that IFC can be provided at operating system level as part of a PaaS offering, with an acceptable overhead. In this paper we consider how IFC can be integrated with application-specific access control, transparently from application developers, while building from simple IFC primitives, access control policies that align with the data management obligations of cloud providers and tenants.

Razaq, Abdul, Tianfield, Huaglory, Barrie, Peter.  2016.  A Big Data Analytics Based Approach to Anomaly Detection. Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. :187–193.

We present a novel Cyber Security analytics framework. We demonstrate a comprehensive cyber security monitoring system to construct cyber security correlated events with feature selection to anticipate behaviour based on various sensors.

Salinas, Sergio, Luo, Changqing, Liao, Weixian, Li, Pan.  2016.  Efficient Secure Outsourcing of Large-scale Quadratic Programs. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :281–292.

The massive amount of data that is being collected by today's society has the potential to advance scientific knowledge and boost innovations. However, people often lack sufficient computing resources to analyze their large-scale data in a cost-effective and timely way. Cloud computing offers access to vast computing resources on an on-demand and pay-per-use basis, which is a practical way for people to analyze their huge data sets. However, since their data contain sensitive information that needs to be kept secret for ethical, security, or legal reasons, many people are reluctant to adopt cloud computing. For the first time in the literature, we propose a secure outsourcing algorithm for large-scale quadratic programs (QPs), which is one of the most fundamental problems in data analysis. Specifically, based on simple linear algebra operations, we design a low-complexity QP transformation that protects the private data in a QP. We show that the transformed QP is computationally indistinguishable under a chosen plaintext attack (CPA), i.e., CPA-secure. We then develop a parallel algorithm to solve the transformed QP at the cloud, and efficiently find the solution to the original QP at the user. We implement the proposed algorithm on the Amazon Elastic Compute Cloud (EC2) and a laptop. We find that our proposed algorithm offers significant time savings for the user and is scalable to the size of the QP.

Li, Yibin, Gai, Keke, Ming, Zhong, Zhao, Hui, Qiu, Meikang.  2016.  Intercrossed Access Controls for Secure Financial Services on Multimedia Big Data in Cloud Systems. ACM Trans. Multimedia Comput. Commun. Appl.. 12:67:1–67:18.

The dramatically growing demand of Cyber Physical and Social Computing (CPSC) has enabled a variety of novel channels to reach services in the financial industry. Combining cloud systems with multimedia big data is a novel approach for Financial Service Institutions (FSIs) to diversify service offerings in an efficient manner. However, the security issue is still a great issue in which the service availability often conflicts with the security constraints when the service media channels are varied. This paper focuses on this problem and proposes a novel approach using the Semantic-Based Access Control (SBAC) techniques for acquiring secure financial services on multimedia big data in cloud computing. The proposed approach is entitled IntercroSsed Secure Big Multimedia Model (2SBM), which is designed to secure accesses between various media through the multiple cloud platforms. The main algorithms supporting the proposed model include the Ontology-Based Access Recognition (OBAR) Algorithm and the Semantic Information Matching (SIM) Algorithm. We implement an experimental evaluation to prove the correctness and adoptability of our proposed scheme.

Kuang, Liwei, Yang, Laurence T., Rho, Seungmin(Charlie), Yan, Zheng, Qiu, Kai.  2016.  A Tensor-Based Framework for Software-Defined Cloud Data Center. ACM Trans. Multimedia Comput. Commun. Appl.. 12:74:1–74:23.

Multimedia has been exponentially increasing as the biggest big data, which consist of video clips, images, and audio files. Processing and analyzing them on a cloud data center have become a preferred solution that can utilize the large pool of cloud resources to address the problems caused by the tremendous amount of unstructured multimedia data. However, there exist many challenges in processing multimedia big data on a cloud data center, such as multimedia data representation approach, an efficient networking model, and an estimation method for traffic patterns. The primary purpose of this article is to develop a novel tensor-based software-defined networking model on a cloud data center for multimedia big-data computation and communication. First, an overview of the proposed framework is provided, in which the functions of the representative modules are briefly illustrated. Then, three models,—forwarding tensor, control tensor, and transition tensor—are proposed for management of networking devices and prediction of network traffic patterns. Finally, two algorithms about single-mode and multimode tensor eigen-decomposition are developed, and the incremental method is employed for efficiently updating the generated eigen-vector and eigen-tensor. Experimental results reveal that the proposed framework is feasible and efficient to handle multimedia big data on a cloud data center.

Zhang, Xuyun, Leckie, Christopher, Dou, Wanchun, Chen, Jinjun, Kotagiri, Ramamohanarao, Salcic, Zoran.  2016.  Scalable Local-Recoding Anonymization Using Locality Sensitive Hashing for Big Data Privacy Preservation. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :1793–1802.

While cloud computing has become an attractive platform for supporting data intensive applications, a major obstacle to the adoption of cloud computing in sectors such as health and defense is the privacy risk associated with releasing datasets to third-parties in the cloud for analysis. A widely-adopted technique for data privacy preservation is to anonymize data via local recoding. However, most existing local-recoding techniques are either serial or distributed without directly optimizing scalability, thus rendering them unsuitable for big data applications. In this paper, we propose a highly scalable approach to local-recoding anonymization in cloud computing, based on Locality Sensitive Hashing (LSH). Specifically, a novel semantic distance metric is presented for use with LSH to measure the similarity between two data records. Then, LSH with the MinHash function family can be employed to divide datasets into multiple partitions for use with MapReduce to parallelize computation while preserving similarity. By using our efficient LSH-based scheme, we can anonymize each partition through the use of a recursive agglomerative \$k\$-member clustering algorithm. Extensive experiments on real-life datasets show that our approach significantly improves the scalability and time-efficiency of local-recoding anonymization by orders of magnitude over existing approaches.

Sivakorn, Suphannee, Keromytis, Angelos D., Polakis, Jason.  2016.  That's the Way the Cookie Crumbles: Evaluating HTTPS Enforcing Mechanisms. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :71–81.

Recent incidents have once again brought the topic of encryption to public discourse, while researchers continue to demonstrate attacks that highlight the difficulty of implementing encryption even without the presence of "backdoors". However, apart from the threat of implementation flaws in encryption libraries, another significant threat arises when web services fail to enforce ubiquitous encryption. A recent study explored this phenomenon in popular services, and demonstrated how users are exposed to cookie hijacking attacks with severe privacy implications. Many security mechanisms purport to eliminate this problem, ranging from server-controlled options such as HSTS to user-controlled options such as HTTPS Everywhere and other browser extensions. In this paper, we create a taxonomy of available mechanisms and evaluate how they perform in practice. We design an automated testing framework for these mechanisms, and evaluate them using a dataset of 30 days of HTTP requests collected from the public wireless network of our university's campus. We find that all mechanisms suffer from implementation flaws or deployment issues and argue that, as long as servers continue to not support ubiquitous encryption across their entire domain (including all subdomains), no mechanism can effectively protect users from cookie hijacking and information leakage.

Li, Xiaoyu, Yoshie, Osamu, Huang, Daoping.  2016.  A Passive Means Based Privacy Protection Method for the Perceptual Layer of IoTs. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :335–339.

Privacy protection in Internet of Things (IoTs) has long been the topic of extensive research in the last decade. The perceptual layer of IoTs suffers the most significant privacy disclosing because of the limitation of hardware resources. Data encryption and anonymization are the most common methods to protect private information for the perceptual layer of IoTs. However, these efforts are ineffective to avoid privacy disclosure if the communication environment exists unknown wireless nodes which could be malicious devices. Therefore, in this paper we derive an innovative and passive method called Horizontal Hierarchy Slicing (HHS) method to detect the existence of unknown wireless devices which could result negative means to the privacy. PAM algorithm is used to cluster the HHS curves and analyze whether unknown wireless devices exist in the communicating environment. Link Quality Indicator data are utilized as the network parameters in this paper. The simulation results show their effectiveness in privacy protection.

Li, Yan, Zhu, Ting.  2016.  Gait-Based Wi-Fi Signatures for Privacy-Preserving. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :571–582.

With the advent of the Internet of Things (IoT) and big data, high fidelity localization and tracking systems that employ cameras, RFIDs, and attached sensors intrude on personal privacy. However, the benefit of localization information sharing enables trend forecasting and automation. To address this challenge, we introduce Wobly, an attribute based signature (ABS) that measures gait. Wobly passively receives Wi-Fi beacons and produces human signatures based on the Doppler Effect and multipath signals without attached devices and out of direct line-of-sight. Because signatures are specific to antenna placement and room configuration and do not require sensor attachments, the identities of the individuals can remain anonymous. However, the gait based signatures are still unique, and thus Wobly is able to track individuals in a building or home. Wobly uses the physical layer channel and the unique human gait as a means of encoding a person's identity. We implemented Wobly on a National Instruments Radio Frequency (RF) test bed. Using a simple naive Bayes classifier, the correct identification rate was 87% with line-of-sight (LoS) and 77% with non-line-of-sight (NLoS).

Shokri, Reza, Theodorakopoulos, George, Troncoso, Carmela.  2016.  Privacy Games Along Location Traces: A Game-Theoretic Framework for Optimizing Location Privacy. ACM Trans. Priv. Secur.. 19:11:1–11:31.

The mainstream approach to protecting the privacy of mobile users in location-based services (LBSs) is to alter (e.g., perturb, hide, and so on) the users’ actual locations in order to reduce exposed sensitive information. In order to be effective, a location-privacy preserving mechanism must consider both the privacy and utility requirements of each user, as well as the user’s overall exposed locations (which contribute to the adversary’s background knowledge). In this article, we propose a methodology that enables the design of optimal user-centric location obfuscation mechanisms respecting each individual user’s service quality requirements, while maximizing the expected error that the optimal adversary incurs in reconstructing the user’s actual trace. A key advantage of a user-centric mechanism is that it does not depend on third-party proxies or anonymizers; thus, it can be directly integrated in the mobile devices that users employ to access LBSs. Our methodology is based on the mutual optimization of user/adversary objectives (maximizing location privacy versus minimizing localization error) formalized as a Stackelberg Bayesian game. This formalization makes our solution robust against any location inference attack, that is, the adversary cannot decrease the user’s privacy by designing a better inference algorithm as long as the obfuscation mechanism is designed according to our privacy games. We develop two linear programs that solve the location privacy game and output the optimal obfuscation strategy and its corresponding optimal inference attack. These linear programs are used to design location privacy–preserving mechanisms that consider the correlation between past, current, and future locations of the user, thus can be tuned to protect different privacy objectives along the user’s location trace. We illustrate the efficacy of the optimal location privacy–preserving mechanisms obtained with our approach against real location traces, showing their performance in protecting users’ different location privacy objectives.

Spreitzer, Raphael, Griesmayr, Simone, Korak, Thomas, Mangard, Stefan.  2016.  Exploiting Data-Usage Statistics for Website Fingerprinting Attacks on Android. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :49–60.

The browsing behavior of a user allows to infer personal details, such as health status, political interests, sexual orientation, etc. In order to protect this sensitive information and to cope with possible privacy threats, defense mechanisms like SSH tunnels and anonymity networks (e.g., Tor) have been established. A known shortcoming of these defenses is that website fingerprinting attacks allow to infer a user's browsing behavior based on traffic analysis techniques. However, website fingerprinting typically assumes access to the client's network or to a router near the client, which restricts the applicability of these attacks. In this work, we show that this rather strong assumption is not required for website fingerprinting attacks. Our client-side attack overcomes several limitations and assumptions of network-based fingerprinting attacks, e.g., network conditions and traffic noise, disabled browser caches, expensive training phases, etc. Thereby, we eliminate assumptions used for academic purposes and present a practical attack that can be implemented easily and deployed on a large scale. Eventually, we show that an unprivileged application can infer the browsing behavior by exploiting the unprotected access to the Android data-usage statistics. More specifically, we are able to infer 97% of 2,500 page visits out of a set of 500 monitored pages correctly. Even if the traffic is routed through Tor by using the Orbot proxy in combination with the Orweb browser, we can infer 95% of 500 page visits out of a set of 100 monitored pages correctly. Thus, the READ\_HISTORY\_BOOKMARKS permission, which is supposed to protect the browsing behavior, does not provide protection.

Alan, Hasan Faik, Kaur, Jasleen.  2016.  Can Android Applications Be Identified Using Only TCP/IP Headers of Their Launch Time Traffic? Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :61–66.

The ability to identify mobile apps in network traffic has significant implications in many domains, including traffic management, malware detection, and maintaining user privacy. App identification methods in the literature typically use deep packet inspection (DPI) and analyze HTTP headers to extract app fingerprints. However, these methods cannot be used if HTTP traffic is encrypted. We investigate whether Android apps can be identified from their launch-time network traffic using only TCP/IP headers. We first capture network traffic of 86,109 app launches by repeatedly running 1,595 apps on 4 distinct Android devices. We then use supervised learning methods used previously in the web page identification literature, to identify the apps that generated the traffic. We find that: (i) popular Android apps can be identified with 88% accuracy, by using the packet sizes of the first 64 packets they generate, when the learning methods are trained and tested on the data collected from same device; (ii) when the data from an unseen device (but similar operating system/vendor) is used for testing, the apps can be identified with 67% accuracy; (iii) the app identification accuracy does not drop significantly even if the training data are stale by several days, and (iv) the accuracy does drop quite significantly if the operating system/vendor is very different. We discuss the implications of our findings as well as open issues.

Barman, Ludovic, Zamani, Mahdi, Dacosta, Italo, Feigenbaum, Joan, Ford, Bryan, Hubaux, Jean-Pierre, Wolinsky, David.  2016.  PriFi: A Low-Latency and Tracking-Resistant Protocol for Local-Area Anonymous Communication. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :181–184.

Popular anonymity mechanisms such as Tor provide low communication latency but are vulnerable to traffic analysis attacks that can de-anonymize users. Moreover, known traffic-analysis-resistant techniques such as Dissent are impractical for use in latency-sensitive settings such as wireless networks. In this paper, we propose PriFi, a low-latency protocol for anonymous communication in local area networks that is provably secure against traffic analysis attacks. This allows members of an organization to access the Internet anonymously while they are on-site, via privacy-preserving WiFi networking, or off-site, via privacy-preserving virtual private networking (VPN). PriFi reduces communication latency using a client/relay/server architecture in which a set of servers computes cryptographic material in parallel with the clients to minimize unnecessary communication latency. We also propose a technique for protecting against equivocation attacks, with which a malicious relay might de-anonymize clients. This is achieved without adding extra latency by encrypting client messages based on the history of all messages they have received so far. As a result, any equivocation attempt makes the communication unintelligible, preserving clients' anonymity while holding the servers accountable.

Xue, Minhui, Ballard, Cameron, Liu, Kelvin, Nemelka, Carson, Wu, Yanqiu, Ross, Keith, Qian, Haifeng.  2016.  You Can Yak but You Can'T Hide: Localizing Anonymous Social Network Users. Proceedings of the 2016 Internet Measurement Conference. :25–31.

The recent growth of anonymous social network services – such as 4chan, Whisper, and Yik Yak – has brought online anonymity into the spotlight. For these services to function properly, the integrity of user anonymity must be preserved. If an attacker can determine the physical location from where an anonymous message was sent, then the attacker can potentially use side information (for example, knowledge of who lives at the location) to de-anonymize the sender of the message. In this paper, we investigate whether the popular anonymous social media application Yik Yak is susceptible to localization attacks, thereby putting user anonymity at risk. The problem is challenging because Yik Yak application does not provide information about distances between user and message origins or any other message location information. We provide a comprehensive data collection and supervised machine learning methodology that does not require any reverse engineering of the Yik Yak protocol, is fully automated, and can be remotely run from anywhere. We show that we can accurately predict the locations of messages up to a small average error of 106 meters. We also devise an experiment where each message emanates from one of nine dorm colleges on the University of California Santa Cruz campus. We are able to determine the correct dorm college that generated each message 100\textbackslash% of the time.

Wu, Fei, Yang, Yang, Zhang, Ouyang, Srinivasan, Kannan, Shroff, Ness B..  2016.  Anonymous-query Based Rate Control for Wireless Multicast: Approaching Optimality with Constant Feedback. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :191–200.

For a multicast group of n receivers, existing techniques either achieve high throughput at the cost of prohibitively large (e.g., O(n)) feedback overhead, or achieve low feedback overhead but without either optimal or near-optimal throughput guarantees. Simultaneously achieving good throughput guarantees and low feedback overhead has been an open problem and could be the key reason why wireless multicast has not been successfully deployed in practice. In this paper, we develop a novel anonymous-query based rate control, which approaches the optimal throughput with a constant feedback overhead independent of the number of receivers. In addition to our theoretical results, through implementation on a software-defined ratio platform, we show that the anonymous-query based algorithm achieves low-overhead and robustness in practice.

Bultel, Xavier, Gambs, Sébastien, Gérault, David, Lafourcade, Pascal, Onete, Cristina, Robert, Jean-Marc.  2016.  A Prover-Anonymous and Terrorist-Fraud Resistant Distance-Bounding Protocol. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :121–133.

Contactless communications have become omnipresent in our daily lives, from simple access cards to electronic passports. Such systems are particularly vulnerable to relay attacks, in which an adversary relays the messages from a prover to a verifier. Distance-bounding protocols were introduced to counter such attacks. Lately, there has been a very active research trend on improving the security of these protocols, but also on ensuring strong privacy properties with respect to active adversaries and malicious verifiers. In particular, a difficult threat to address is the terrorist fraud, in which a far-away prover cooperates with a nearby accomplice to fool a verifier. The usual defence against this attack is to make it impossible for the accomplice to succeed unless the prover provides him with enough information to recover his secret key and impersonate him later on. However, the mere existence of a long-term secret key is problematic with respect to privacy. In this paper, we propose a novel approach in which the prover does not leak his secret key but a reusable session key along with a group signature on it. This allows the adversary to impersonate him even without knowing his signature key. Based on this approach, we give the first distance-bounding protocol, called SPADE, integrating anonymity, revocability and provable resistance to standard threat models.

Kalbarczyk, Tomasz, Julien, Christine.  2016.  XD (Exchange-deliver): \#a Middleware for Developing Device-to-device Mobile Applications. Proceedings of the International Conference on Mobile Software Engineering and Systems. :271–274.

In this demonstration, we showcase the XD middleware, a framework for expressive multiplexing of application communication streams onto underlying device-to-device communication links. XD allows applications to remain agnostic about which low-level networking stack is actually delivering messages and instead focus on the application-level content and delivery parameters. The IoT space has been flooded with new communication technologies (e.g., BLE, ZigBee, 6LoWPAN) to add to those already available on modern mobile devices (e.g., BLE, WiFi-Direct), substantially increasing the barrier to entry for developing innovative IoT applications. XD presents application developers with a simple publish-subscribe API for sending and receiving data streams, unburdening them from the task of selecting and coordinating communication channels. Our demonstration shows two Android applications, Disseminate and Prophet, running using our XD middleware for communication. We implemented BLE, WiFi Direct with TCP, and WiFi Direct with UDP communication stacks underneath XD.

2017-04-21
Christopher Hannon, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory, Jianhui Wang, Argonne National Laboratory.  2017.  Ultimate Forwarding Resilience in OpenFlow Networks. ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization (SDN-NFV Security 2017).

Software defined networking is a rapidly expanding networking paradigm that aims to separate the control logic from the forwarding devices. Through centralized control, network operators are able to deploy and manage more efficient forwarding strategies. Traditionally, when the network undergoes a change through maintenance, failure, or cyber attack, the centralized controller processes these events and deploys new forwarding rules reactively. This work provides a strategy that does not require a controller in order to maintain connectivity while only using features within the existing OpenFlow protocol version 1.3 or greater. In this paper we illustrate why forwarding resiliency is desired in OpenFlow networks and provide an algorithm that computes the flow entries required to achieve maximal forwarding resiliency in presence of both multiple link and controller failures on any arbitrary network.

2017-04-20
Lee, Joohyun, Lee, Kyunghan, Jeong, Euijin, Jo, Jaemin, Shroff, Ness B..  2016.  Context-aware Application Scheduling in Mobile Systems: What Will Users Do and Not Do Next? Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :1235–1246.

Usage patterns of mobile devices depend on a variety of factors such as time, location, and previous actions. Hence, context-awareness can be the key to make mobile systems to become personalized and situation dependent in managing their resources. We first reveal new findings from our own Android user experiment: (i) the launching probabilities of applications follow Zipf's law, and (ii) inter-running and running times of applications conform to log-normal distributions. We also find context-dependency in application usage patterns, for which we classify contexts in a personalized manner with unsupervised learning methods. Using the knowledge acquired, we develop a novel context-aware application scheduling framework, CAS that adaptively unloads and preloads background applications in a timely manner. Our trace-driven simulations with 96 user traces demonstrate the benefits of CAS over existing algorithms. We also verify the practicality of CAS by implementing it on the Android platform.