Visible to the public Biblio

Filters: Keyword is multilayer perceptrons  [Clear All Filters]
2023-08-18
Chirupphapa, Pawissakan, Hossain, Md Delwar, Esaki, Hiroshi, Ochiai, Hideya.  2022.  Unsupervised Anomaly Detection in RS-485 Traffic using Autoencoders with Unobtrusive Measurement. 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC). :17—23.
Remotely connected devices have been adopted in several industrial control systems (ICS) recently due to the advancement in the Industrial Internet of Things (IIoT). This led to new security vulnerabilities because of the expansion of the attack surface. Moreover, cybersecurity incidents in critical infrastructures are increasing. In the ICS, RS-485 cables are widely used in its network for serial communication between each component. However, almost 30 years ago, most of the industrial network protocols implemented over RS-485 such as Modbus were designed without security features. Therefore, anomaly detection is required in industrial control networks to secure communication in the systems. The goal of this paper is to study unsupervised anomaly detection in RS-485 traffic using autoencoders. Five threat scenarios in the physical layer of the industrial control network are proposed. The novelty of our method is that RS-485 traffic is collected indirectly by an analog-to-digital converter. In the experiments, multilayer perceptron (MLP), 1D convolutional, Long Short-Term Memory (LSTM) autoencoders are trained to detect anomalies. The results show that three autoencoders effectively detect anomalous traffic with F1-scores of 0.963, 0.949, and 0.928 respectively. Due to the indirect traffic collection, our method can be practically applied in the industrial control network.
2022-03-23
Gattineni, Pradeep, Dharan, G.R Sakthi.  2021.  Intrusion Detection Mechanisms: SVM, random forest, and extreme learning machine (ELM). 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :273–276.
Intrusion detection method cautions and through build recognition rate. Through determine worries forth execution support vector machine (SVM), multilayer perceptron and different procedures have endured utilized trig ongoing work. Such strategies show impediments & persist not effective considering use trig enormous informational indexes, considering example, outline & system information. Interruption recognition outline utilized trig examining colossal traffic information; consequently, a proficient grouping strategy important through beat issue. Aforementioned issue considered trig aforementioned paper. Notable AI methods, specifically, SVM, arbitrary backwoods, & extreme learning machine (ELM) persist applied. These procedures persist notable trig view epithetical their capacity trig characterization. NSL-information revelation & knowledge mining informational collection components. Outcomes demonstrate a certain ELM beats different methodologies.
2021-03-29
Yilmaz, I., Masum, R., Siraj, A..  2020.  Addressing Imbalanced Data Problem with Generative Adversarial Network For Intrusion Detection. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :25–30.

Machine learning techniques help to understand underlying patterns in datasets to develop defense mechanisms against cyber attacks. Multilayer Perceptron (MLP) technique is a machine learning technique used in detecting attack vs. benign data. However, it is difficult to construct any effective model when there are imbalances in the dataset that prevent proper classification of attack samples in data. In this research, we use UGR'16 dataset to conduct data wrangling initially. This technique helps to prepare a test set from the original dataset to train the neural network model effectively. We experimented with a series of inputs of varying sizes (i.e. 10000, 50000, 1 million) to observe the performance of the MLP neural network model with distribution of features over accuracy. Later, we use Generative Adversarial Network (GAN) model that produces samples of different attack labels (e.g. blacklist, anomaly spam, ssh scan) for balancing the dataset. These samples are generated based on data from the UGR'16 dataset. Further experiments with MLP neural network model shows that a balanced attack sample dataset, made possible with GAN, produces more accurate results than an imbalanced one.

2021-03-09
Lee, T., Chang, L., Syu, C..  2020.  Deep Learning Enabled Intrusion Detection and Prevention System over SDN Networks. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.

The Software Defined Network (SDN) provides higher programmable functionality for network configuration and management dynamically. Moreover, SDN introduces a centralized management approach by dividing the network into control and data planes. In this paper, we introduce a deep learning enabled intrusion detection and prevention system (DL-IDPS) to prevent secure shell (SSH) brute-force attacks and distributed denial-of-service (DDoS) attacks in SDN. The packet length in SDN switch has been collected as a sequence for deep learning models to identify anomalous and malicious packets. Four deep learning models, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Stacked Auto-encoder (SAE), are implemented and compared for the proposed DL-IDPS. The experimental results show that the proposed MLP based DL-IDPS has the highest accuracy which can achieve nearly 99% and 100% accuracy to prevent SSH Brute-force and DDoS attacks, respectively.

Rojas-Dueñas, G., Riba, J., Kahalerras, K., Moreno-Eguilaz, M., Kadechkar, A., Gomez-Pau, A..  2020.  Black-Box Modelling of a DC-DC Buck Converter Based on a Recurrent Neural Network. 2020 IEEE International Conference on Industrial Technology (ICIT). :456–461.
Artificial neural networks allow the identification of black-box models. This paper proposes a method aimed at replicating the static and dynamic behavior of a DC-DC power converter based on a recurrent nonlinear autoregressive exogenous neural network. The method proposed in this work applies an algorithm that trains a neural network based on the inputs and outputs (currents and voltages) of a Buck converter. The approach is validated by means of simulated data of a realistic nonsynchronous Buck converter model programmed in Simulink and by means of experimental results. The predictions made by the neural network are compared to the actual outputs of the system, to determine the accuracy of the method, thus validating the proposed approach. Both simulation and experimental results show the feasibility and accuracy of the proposed black-box approach.
2021-03-04
Nugraha, B., Nambiar, A., Bauschert, T..  2020.  Performance Evaluation of Botnet Detection using Deep Learning Techniques. 2020 11th International Conference on Network of the Future (NoF). :141—149.

Botnets are one of the major threats on the Internet. They are used for malicious activities to compromise the basic network security goals, namely Confidentiality, Integrity, and Availability. For reliable botnet detection and defense, deep learning-based approaches were recently proposed. In this paper, four different deep learning models, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), hybrid CNN-LSTM, and Multi-layer Perception (MLP) are applied for botnet detection and simulation studies are carried out using the CTU-13 botnet traffic dataset. We use several performance metrics such as accuracy, sensitivity, specificity, precision, and F1 score to evaluate the performance of each model on classifying both known and unknown (zero-day) botnet traffic patterns. The results show that our deep learning models can accurately and reliably detect both known and unknown botnet traffic, and show better performance than other deep learning models.

2021-02-16
Başkaya, D., Samet, R..  2020.  DDoS Attacks Detection by Using Machine Learning Methods on Online Systems. 2020 5th International Conference on Computer Science and Engineering (UBMK). :52—57.
DDoS attacks impose serious threats to many large or small organizations; therefore DDoS attacks have to be detected as soon as possible. In this study, a methodology to detect DDoS attacks is proposed and implemented on online systems. In the scope of the proposed methodology, Multi Layer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN), C-Support Vector Machine (SVC) machine learning methods are used with scaling and feature reduction preprocessing methods and then effects of preprocesses on detection accuracy rates of HTTP (Hypertext Transfer Protocol) flood, TCP SYN (Transport Control Protocol Synchronize) flood, UDP (User Datagram Protocol) flood and ICMP (Internet Control Message Protocol) flood DDoS attacks are analyzed. Obtained results showed that DDoS attacks can be detected with high accuracy of 99.2%.
2020-11-02
Anzer, Ayesha, Elhadef, Mourad.  2018.  A Multilayer Perceptron-Based Distributed Intrusion Detection System for Internet of Vehicles. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :438—445.

Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.

2020-07-20
Boumiza, Safa, Braham, Rafik.  2019.  An Anomaly Detector for CAN Bus Networks in Autonomous Cars based on Neural Networks. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–6.
The domain of securing in-vehicle networks has attracted both academic and industrial researchers due to high danger of attacks on drivers and passengers. While securing wired and wireless interfaces is important to defend against these threats, detecting attacks is still the critical phase to construct a robust secure system. There are only a few results on securing communication inside vehicles using anomaly-detection techniques despite their efficiencies in systems that need real-time detection. Therefore, we propose an intrusion detection system (IDS) based on Multi-Layer Perceptron (MLP) neural network for Controller Area Networks (CAN) bus. This IDS divides data according to the ID field of CAN packets using K-means clustering algorithm, then it extracts suitable features and uses them to train and construct the neural network. The proposed IDS works for each ID separately and finally it combines their individual decisions to construct the final score and generates alert in the presence of attack. The strength of our intrusion detection method is that it works simultaneously for two types of attacks which will eliminate the use of several separate IDS and thus reduce the complexity and cost of implementation.
2020-01-28
Bernardi, Mario Luca, Cimitile, Marta, Martinelli, Fabio, Mercaldo, Francesco.  2019.  Keystroke Analysis for User Identification Using Deep Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN). :1–8.

The current authentication systems based on password and pin code are not enough to guarantee attacks from malicious users. For this reason, in the last years, several studies are proposed with the aim to identify the users basing on their typing dynamics. In this paper, we propose a deep neural network architecture aimed to discriminate between different users using a set of keystroke features. The idea behind the proposed method is to identify the users silently and continuously during their typing on a monitored system. To perform such user identification effectively, we propose a feature model able to capture the typing style that is specific to each given user. The proposed approach is evaluated on a large dataset derived by integrating two real-world datasets from existing studies. The merged dataset contains a total of 1530 different users each writing a set of different typing samples. Several deep neural networks, with an increasing number of hidden layers and two different sets of features, are tested with the aim to find the best configuration. The final best classifier scores a precision equal to 0.997, a recall equal to 0.99 and an accuracy equal to 99% using an MLP deep neural network with 9 hidden layers. Finally, the performances obtained by using the deep learning approach are also compared with the performance of traditional decision-trees machine learning algorithm, attesting the effectiveness of the deep learning-based classifiers in the domain of keystroke analysis.

2020-01-27
Qureshi, Ayyaz-Ul-Haq, Larijani, Hadi, Javed, Abbas, Mtetwa, Nhamoinesu, Ahmad, Jawad.  2019.  Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
2019-03-22
Teoh, T. T., Chiew, G., Franco, E. J., Ng, P. C., Benjamin, M. P., Goh, Y. J..  2018.  Anomaly Detection in Cyber Security Attacks on Networks Using MLP Deep Learning. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1-5.

Malicious traffic has garnered more attention in recent years, owing to the rapid growth of information technology in today's world. In 2007 alone, an estimated loss of 13 billion dollars was made from malware attacks. Malware data in today's context is massive. To understand such information using primitive methods would be a tedious task. In this publication we demonstrate some of the most advanced deep learning techniques available, multilayer perceptron (MLP) and J48 (also known as C4.5 or ID3) on our selected dataset, Advanced Security Network Metrics & Non-Payload-Based Obfuscations (ASNM-NPBO) to show that the answer to managing cyber security threats lie in the fore-mentioned methodologies.

2019-03-15
Kim, D., Shin, D., Shin, D..  2018.  Unauthorized Access Point Detection Using Machine Learning Algorithms for Information Protection. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1876-1878.

With the frequent use of Wi-Fi and hotspots that provide a wireless Internet environment, awareness and threats to wireless AP (Access Point) security are steadily increasing. Especially when using unauthorized APs in company, government and military facilities, there is a high possibility of being subjected to various viruses and hacking attacks. It is necessary to detect unauthorized Aps for protection of information. In this paper, we use RTT (Round Trip Time) value data set to detect authorized and unauthorized APs in wired / wireless integrated environment, analyze them using machine learning algorithms including SVM (Support Vector Machine), C4.5, KNN (K Nearest Neighbors) and MLP (Multilayer Perceptron). Overall, KNN shows the highest accuracy.

2018-11-14
Teoh, T. T., Zhang, Y., Nguwi, Y. Y., Elovici, Y., Ng, W. L..  2017.  Analyst Intuition Inspired High Velocity Big Data Analysis Using PCA Ranked Fuzzy K-Means Clustering with Multi-Layer Perceptron (MLP) to Obviate Cyber Security Risk. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1790–1793.
The growing prevalence of cyber threats in the world are affecting every network user. Numerous security monitoring systems are being employed to protect computer networks and resources from falling victim to cyber-attacks. There is a pressing need to have an efficient security monitoring system to monitor the large network datasets generated in this process. A large network datasets representing Malware attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides to the weight of each attribute and forms a scoring system by annotating the log history. We adopted a special semi supervise method to classify cyber security log into attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally train the neural network classifier multilayer perceptron (MLP) base on the manually labelled data. By doing so, our results is very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection. The method of including Artificial Intelligence (AI) and Analyst Intuition (AI) is also known as AI2. The classification results are encouraging in segregating the types of attacks.
2018-06-07
Jiao, X., Luo, M., Lin, J. H., Gupta, R. K..  2017.  An assessment of vulnerability of hardware neural networks to dynamic voltage and temperature variations. 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :945–950.

As a problem solving method, neural networks have shown broad applicability from medical applications, speech recognition, and natural language processing. This success has even led to implementation of neural network algorithms into hardware. In this paper, we explore two questions: (a) to what extent microelectronic variations affects the quality of results by neural networks; and (b) if the answer to first question represents an opportunity to optimize the implementation of neural network algorithms. Regarding first question, variations are now increasingly common in aggressive process nodes and typically manifest as an increased frequency of timing errors. Combating variations - due to process and/or operating conditions - usually results in increased guardbands in circuit and architectural design, thus reducing the gains from process technology advances. Given the inherent resilience of neural networks due to adaptation of their learning parameters, one would expect the quality of results produced by neural networks to be relatively insensitive to the rising timing error rates caused by increased variations. On the contrary, using two frequently used neural networks (MLP and CNN), our results show that variations can significantly affect the inference accuracy. This paper outlines our assessment methodology and use of a cross-layer evaluation approach that extracts hardware-level errors from twenty different operating conditions and then inject such errors back to the software layer in an attempt to answer the second question posed above.

2018-02-27
Sulavko, A. E., Eremenko, A. V., Fedotov, A. A..  2017.  Users' Identification through Keystroke Dynamics Based on Vibration Parameters and Keyboard Pressure. 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1–7.

The paper considers an issues of protecting data from unauthorized access by users' authentication through keystroke dynamics. It proposes to use keyboard pressure parameters in combination with time characteristics of keystrokes to identify a user. The authors designed a keyboard with special sensors that allow recording complementary parameters. The paper presents an estimation of the information value for these new characteristics and error probabilities of users' identification based on the perceptron algorithms, Bayes' rule and quadratic form networks. The best result is the following: 20 users are identified and the error rate is 0.6%.