Biblio
In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.
Controller Area Network is the bus standard that works as a central system inside the vehicles for communicating in-vehicle messages. Despite having many advantages, attackers may hack into a car system through CAN bus, take control of it and cause serious damage. For, CAN bus lacks security services like authentication, encryption etc. Therefore, an anomaly detection system must be integrated with CAN bus in vehicles. In this paper, we proposed an Artificial Neural Network based anomaly detection method to identify illicit messages in CAN bus. We trained our model with two types of attacks so that it can efficiently identify the attacks. When tested, the proposed algorithm showed high performance in detecting Denial of Service attacks (with accuracy 100%) and Fuzzy attacks (with accuracy 99.98%).
While vehicle to everything (V2X) communication enables safety-critical automotive control systems to better support various connected services to improve safety and convenience of drivers, they also allow automotive attack surfaces to increase dynamically in modern vehicles. Many researchers as well as hackers have already demonstrated that they can take remote control of the targeted car by exploiting the vulnerabilities of in-vehicle networks such as Controller Area Networks (CANs). For assuring CAN security, we focus on how to authenticate electronic control units (ECUs) in real-time by addressing the security challenges of in-vehicle networks. In this paper, we propose a novel and lightweight authentication protocol with an attack-resilient tree algorithm, which is based on one-way hash chain. The protocol can be easily deployed in CAN by performing a firmware update of ECU. We have shown analytically that the protocol achieves a high level of security. In addition, the performance of the proposed protocol is validated on CANoe simulator for virtual ECUs and Freescale S12XF used in real vehicles. The results show that our protocol is more efficient than other authentication protocol in terms of authentication time, response time, and service delay.
In-vehicle networks like Controller Area Network, FlexRay, Ethernet are now subjected to huge security threats where unauthorized entities can take control of the whole vehicle. This can pose very serious threats including accidents. Security features like encryption, message authentication are getting implemented in vehicle networks to counteract these issues. This paper is proposing a set of novel validation techniques to ensure that vehicle network security is fool proof. Security validation against requirements, security validation using white box approach, black box approach and grey box approaches are put forward. Test system architecture, validation of message authentication, decoding the patterns from vehicle network data, using diagnostics as a security loophole, V2V V2X loopholes, gateway module security testing are considered in detail. Aim of this research paper is to put forward a set of tools and methods for finding and reporting any security loopholes in the in-vehicle network security implementation.