Visible to the public Biblio

Filters: Keyword is CAN  [Clear All Filters]
2023-05-12
Lakshmi, Swathy, Kumar, Renjith H.  2022.  Secure Communication between Arduinos using Controller Area Network(CAN) Bus. 2022 IEEE International Power and Renewable Energy Conference (IPRECON). :1–6.
Present-day vehicles have numerous Electronic Control Units (ECUs) and they communicate with each other over a network known as the Controller Area Network(CAN) bus. In this way, the CAN bus is a fundamental component of intra-vehicle communication. The CAN bus was designed without focusing on communication security and in this way it is vulnerable to many cyber attacks. As the vehicles are always connected to the Internet, the CAN bus is remotely accessible and could be hacked. To secure the communication between ECUs and defend against these cyber attacks, we apply a Hash Message Authentication Code(HMAC) to automotive data and demonstrate the CAN bus communication between two ECUs using Arduino UNO and MCP2515 CAN bus module.
2022-08-26
Kang, Dong Mug, Yoon, Sang Hun, Shin, Dae Kyo, Yoon, Young, Kim, Hyeon Min, Jang, Soo Hyun.  2021.  A Study on Attack Pattern Generation and Hybrid MR-IDS for In-Vehicle Network. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :291–294.
The CAN (Controller Area Network) bus, which transmits and receives ECU control information in vehicle, has a critical risk of external intrusion because there is no standardized security system. Recently, the need for IDS (Intrusion Detection System) to detect external intrusion of CAN bus is increasing, and high accuracy and real-time processing for intrusion detection are required. In this paper, we propose Hybrid MR (Machine learning and Ruleset) -IDS based on machine learning and ruleset to improve IDS performance. For high accuracy and detection rate, feature engineering was conducted based on the characteristics of the CAN bus, and the generated features were used in detection step. The proposed Hybrid MR-IDS can cope to various attack patterns that have not been learned in previous, as well as the learned attack patterns by using both advantages of rule set and machine learning. In addition, by collecting CAN data from an actual vehicle in driving and stop state, five attack scenarios including physical effects during all driving cycle are generated. Finally, the Hybrid MR-IDS proposed in this paper shows an average of 99% performance based on F1-score.
Teo, Yu Xian, Chen, Jiaqi, Ash, Neil, Ruddle, Alastair R., Martin, Anthony J. M..  2021.  Forensic Analysis of Automotive Controller Area Network Emissions for Problem Resolution. 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium. :619–623.
Electromagnetic emissions associated with the transmission of automotive controller area network (CAN) messages within a passenger car have been analysed and used to reconstruct the original CAN messages. Concurrent monitoring of the CAN traffic via a wired connection to the vehicle OBD-II port was used to validate the effectiveness of the reconstruction process. These results confirm the feasibility of reconstructing in-vehicle network data for forensic purposes, without the need for wired access, at distances of up to 1 m from the vehicle by using magnetic field measurements, and up to 3 m using electric field measurements. This capability has applications in the identification and resolution of EMI issues in vehicle data network, as well as possible implications for automotive cybersecurity.
2022-06-09
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

2022-01-10
Paul, Avishek, Islam, Md Rabiul.  2021.  An Artificial Neural Network Based Anomaly Detection Method in CAN Bus Messages in Vehicles. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–5.

Controller Area Network is the bus standard that works as a central system inside the vehicles for communicating in-vehicle messages. Despite having many advantages, attackers may hack into a car system through CAN bus, take control of it and cause serious damage. For, CAN bus lacks security services like authentication, encryption etc. Therefore, an anomaly detection system must be integrated with CAN bus in vehicles. In this paper, we proposed an Artificial Neural Network based anomaly detection method to identify illicit messages in CAN bus. We trained our model with two types of attacks so that it can efficiently identify the attacks. When tested, the proposed algorithm showed high performance in detecting Denial of Service attacks (with accuracy 100%) and Fuzzy attacks (with accuracy 99.98%).

2021-09-07
Hossain, Md Delwar, Inoue, Hiroyuki, Ochiai, Hideya, FALL, Doudou, Kadobayashi, Youki.  2020.  Long Short-Term Memory-Based Intrusion Detection System for In-Vehicle Controller Area Network Bus. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :10–17.
The Controller Area Network (CAN) bus system works inside connected cars as a central system for communication between electronic control units (ECUs). Despite its central importance, the CAN does not support an authentication mechanism, i.e., CAN messages are broadcast without basic security features. As a result, it is easy for attackers to launch attacks at the CAN bus network system. Attackers can compromise the CAN bus system in several ways: denial of service, fuzzing, spoofing, etc. It is imperative to devise methodologies to protect modern cars against the aforementioned attacks. In this paper, we propose a Long Short-Term Memory (LSTM)-based Intrusion Detection System (IDS) to detect and mitigate the CAN bus network attacks. We first inject attacks at the CAN bus system in a car that we have at our disposal to generate the attack dataset, which we use to test and train our model. Our results demonstrate that our classifier is efficient in detecting the CAN attacks. We achieved a detection accuracy of 99.9949%.
2020-07-20
Nishida, Kanata, Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Security Evaluation of Counter Synchronization Method for CAN Against DoS Attack. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :166–167.
MAC using a counter value in message authentication for in-vehicle network prevents replay attack. When synchronization deviation of the counter value occurs between the sender and receiver, a message cannot be authenticated correctly because the generated MACs are different. Thus, a counter synchronization method has been proposed. In addition, injection and replay attack of a synchronization message for the synchronization method have been performed. However, DoS attack on the synchronization method has not been conducted. This study performs DoS attack in order to evaluate security of the synchronization method. Experimental results reveal the vulnerability of the synchronization method against DoS attack.
2018-09-05
Kang, K., Baek, Y., Lee, S., Son, S. H..  2017.  An Attack-Resilient Source Authentication Protocol in Controller Area Network. 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :109–118.

While vehicle to everything (V2X) communication enables safety-critical automotive control systems to better support various connected services to improve safety and convenience of drivers, they also allow automotive attack surfaces to increase dynamically in modern vehicles. Many researchers as well as hackers have already demonstrated that they can take remote control of the targeted car by exploiting the vulnerabilities of in-vehicle networks such as Controller Area Networks (CANs). For assuring CAN security, we focus on how to authenticate electronic control units (ECUs) in real-time by addressing the security challenges of in-vehicle networks. In this paper, we propose a novel and lightweight authentication protocol with an attack-resilient tree algorithm, which is based on one-way hash chain. The protocol can be easily deployed in CAN by performing a firmware update of ECU. We have shown analytically that the protocol achieves a high level of security. In addition, the performance of the proposed protocol is validated on CANoe simulator for virtual ECUs and Freescale S12XF used in real vehicles. The results show that our protocol is more efficient than other authentication protocol in terms of authentication time, response time, and service delay.

King, Z., Yu, Shucheng.  2017.  Investigating and securing communications in the Controller Area Network (CAN). 2017 International Conference on Computing, Networking and Communications (ICNC). :814–818.
The Controller Area Network (CAN) is a broadcast communications network invented by Robert Bosch GmbH in 1986. CAN is the standard communication network found in automobiles, industry equipment, and many space applications. To be used in these environments, CAN is designed for efficiency and reliability, rather than security. This research paper closely examines the security risks within the CAN protocol and proposes a feasible solution. In this research, we investigate the problems with implementing certain security features in the CAN protocol, such as message authentication and protections against replay and denial-of-service (DoS) attacks. We identify the restrictions of the CAN bus, and we demonstrate how our proposed implementation meets these restrictions. Many previously proposed solutions lack security, feasibility, and/or efficiency; however, a solution must not drastically hinder the real-time operation speed of the network. The solution proposed in this research is tested with a simulative CAN environment. This paper proposes an alteration to the standard CAN bus nodes and the CAN protocol to better protect automobiles and other CAN-related systems from attacks.
2018-03-05
Khan, J..  2017.  Vehicle Network Security Testing. 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). :119–123.

In-vehicle networks like Controller Area Network, FlexRay, Ethernet are now subjected to huge security threats where unauthorized entities can take control of the whole vehicle. This can pose very serious threats including accidents. Security features like encryption, message authentication are getting implemented in vehicle networks to counteract these issues. This paper is proposing a set of novel validation techniques to ensure that vehicle network security is fool proof. Security validation against requirements, security validation using white box approach, black box approach and grey box approaches are put forward. Test system architecture, validation of message authentication, decoding the patterns from vehicle network data, using diagnostics as a security loophole, V2V V2X loopholes, gateway module security testing are considered in detail. Aim of this research paper is to put forward a set of tools and methods for finding and reporting any security loopholes in the in-vehicle network security implementation.