Biblio
In healthcare 4.0 ecosystems, authentication of healthcare information allows health stakeholders to be assured that data is originated from correct source. Recently, biometric based authentication is a preferred choice, but as the templates are stored on central servers, there are high chances of copying and generating fake biometrics. An adversary can forge the biometric pattern, and gain access to critical health systems. Thus, to address the limitation, the paper proposes a scheme, PHBio, where an encryption-based biometric system is designed prior before storing the template to the server. Once a user provides his biometrics, the authentication process does not decrypt the data, rather uses a homomorphic-enabled Paillier cryptosystem. The scheme presents the encryption and the comparison part which is based on euclidean distance (EUD) strategy between the user input and the stored template on the server. We consider the minimum distance, and compare the same with a predefined threshold distance value to confirm a biometric match, and authenticate the user. The scheme is compared against parameters like accuracy, false rejection rates (FARs), and execution time. The proposed results indicate the validity of the scheme in real-time health setups.
Artificial Intelligence systems have enabled significant benefits for users and society, but whilst the data for their feeding are always increasing, a side to privacy and security leaks is offered. The severe vulnerabilities to the right to privacy obliged governments to enact specific regulations to ensure privacy preservation in any kind of transaction involving sensitive information. In the case of digital and/or physical documents comprising sensitive information, the right to privacy can be preserved by data obfuscation procedures. The capability of recognizing sensitive information for obfuscation is typically entrusted to the experience of human experts, who are over-whelmed by the ever increasing amount of documents to process. Artificial intelligence could proficiently mitigate the effort of the human officers and speed up processes. Anyway, until enough knowledge won't be available in a machine readable format, automatic and effectively working systems can't be developed. In this work we propose a methodology for transferring and leveraging general knowledge across specific-domain tasks. We built, from scratch, specific-domain knowledge data sets, for training artificial intelligence models supporting human experts in privacy preserving tasks. We exploited a mixture of natural language processing techniques applied to unlabeled domain-specific documents corpora for automatically obtain labeled documents, where sensitive information are recognized and tagged. We performed preliminary tests just over 10.000 documents from the healthcare and justice domains. Human experts supported us during the validation. Results we obtained, estimated in terms of precision, recall and F1-score metrics across these two domains, were promising and encouraged us to further investigations.
Recently, a large amount of research studies aiming at the privacy-preserving data publishing have been conducted. We find that most K-anonymity algorithms fail to consider the characteristics of attribute values distribution in data and the contribution value differences in quasi-identifier attributes when service-oriented. In this paper, the importance of distribution characteristics of attribute values and the differences in contribution value of quasi-identifier attributes to anonymous results are illustrated. In order to maximize the utility of released data, a service-oriented adaptive anonymity algorithm is proposed. We establish a model of reaction dispersion degree to quantify the characteristics of attribute value distribution and introduce the concept of utility weight related to the contribution value of quasi-identifier attributes. The priority coefficient and the characterization coefficient of partition quality are defined to optimize selection strategies of dimension and splitting value in anonymity group partition process adaptively, which can reduce unnecessary information loss so as to further improve the utility of anonymized data. The rationality and validity of the algorithm are verified by theoretical analysis and multiple experiments.
Privacy preservation is a challenging task with the huge amount of data that are available in social media. The data those are stored in the distributed environment or in cloud environment need to ensure confidentiality to data. In addition, representing the voluminous data is graph will be convenient to perform keyword search. The proposed work initially reads the data corresponding to social media and converts that into a graph. In order to prevent the data from the active attacks Advanced Encryption Standard algorithm is used to perform graph encryption. Later, search operation is done using two algorithms: kNK keyword search algorithm and top k nearest keyword search algorithm. The first scheme is used to fetch all the data corresponding to the keyword. The second scheme is used to fetch the nearest neighbor. This scheme increases the efficiency of the search process. Here shortest path algorithm is used to find the minimum distance. Now, based on the minimum value the results are produced. The proposed algorithm shows high performance for graph generation and searching and moderate performance for graph encryption.
Trusted collaboration satisfying the requirements of (a) adequate transparency and (b) preservation of privacy of business sensitive information is a key factor to ensure the success and adoption of online business-to-business (B2B) collaboration platforms. Our work proposes novel ways of stringing together game theoretic modeling, blockchain technology, and cryptographic techniques to build such a platform for B2B collaboration involving enterprise buyers and sellers who may be strategic. The B2B platform builds upon three ideas. The first is to use a permissioned blockchain with smart contracts as the technical infrastructure for building the platform. Second, the above smart contracts implement deep business logic which is derived using a rigorous analysis of a repeated game model of the strategic interactions between buyers and sellers to devise strategies to induce honest behavior from buyers and sellers. Third, we present a formal framework that captures the essential requirements for secure and private B2B collaboration, and, in this direction, we develop cryptographic regulation protocols that, in conjunction with the blockchain, help implement such a framework. We believe our work is an important first step in the direction of building a platform that enables B2B collaboration among strategic and competitive agents while maximizing social welfare and addressing the privacy concerns of the agents.
In recent trends, privacy preservation is the most predominant factor, on big data analytics and cloud computing. Every organization collects personal data from the users actively or passively. Publishing this data for research and other analytics without removing Personally Identifiable Information (PII) will lead to the privacy breach. Existing anonymization techniques are failing to maintain the balance between data privacy and data utility. In order to provide a trade-off between the privacy of the users and data utility, a Mondrian based k-anonymity approach is proposed. To protect the privacy of high-dimensional data Deep Neural Network (DNN) based framework is proposed. The experimental result shows that the proposed approach mitigates the information loss of the data without compromising privacy.