Biblio
With the electric power distribution grid facing ever increasing complexity and new threats from cyber-attacks, situational awareness for system operators is quickly becoming indispensable. Identifying de-energized lines on the distribution system during a SCADA communication failure is a prime example where operators need to act quickly to deal with an emergent loss of service. Loss of cellular towers, poor signal strength, and even cyber-attacks can impact SCADA visibility of line devices on the distribution system. Neural Networks (NNs) provide a unique approach to learn the characteristics of normal system behavior, identify when abnormal conditions occur, and flag these conditions for system operators. This study applies a 24-hour load forecast for distribution line devices given the weather forecast and day of the week, then determines the current state of distribution devices based on changes in SCADA analogs from communicating line devices. A neural network-based algorithm is applied to historical events on Alabama Power's distribution system to identify de-energized sections of line when a significant amount of SCADA information is hidden.
Various perceptual domains have underlying compositional semantics that are rarely captured in current models. We suspect this is because directly learning the compositional structure has evaded these models. Yet, the compositional structure of a given domain can be grounded in a separate domain thereby simplifying its learning. To that end, we propose a new approach to modeling bimodal perceptual domains that explicitly relates distinct projections across each modality and then jointly learns a bimodal sparse representation. The resulting model enables compositionality across these distinct projections and hence can generalize to unobserved percepts spanned by this compositional basis. For example, our model can be trained on red triangles and blue squares; yet, implicitly will also have learned red squares and blue triangles. The structure of the projections and hence the compositional basis is learned automatically; no assumption is made on the ordering of the compositional elements in either modality. Although our modeling paradigm is general, we explicitly focus on a tabletop building-blocks setting. To test our model, we have acquired a new bimodal dataset comprising images and spoken utterances of colored shapes (blocks) in the tabletop setting. Our experiments demonstrate the benefits of explicitly leveraging compositionality in both quantitative and human evaluation studies.
With the ever so growing boundaries for security in the cloud, it is necessary to develop ways to prevent from total cloud server failure. In this paper, we try to design a Game Strategy Block that sets up rules for security based on a tower defence game to secure the hypervisor from potential threats. We also try to define a utility function named the Virtual Machine Vitality Measure (VMVM) that could enlighten on the status of the virtual machines on the virtual environment.
There are many challenges when it comes to deploying robots remotely including lack of operator situation awareness and decreased trust. Here, we present a conversational agent embodied in a Furhat robot that can help with the deployment of such remote robots by facilitating teaming with varying levels of operator control.
Subscriber Identity Module (SIM) is the backbone of modern mobile communication. SIM can be used to store a number of user sensitive information such as user contacts, SMS, banking information (some banking applications store user credentials on the SIM) etc. Unfortunately, the current SIM model has a major weakness. When the mobile device is lost, an adversary can simply steal a user's SIM and use it. He/she can then extract the user's sensitive information stored on the SIM. Moreover, The adversary can then pose as the user and communicate with the contacts stored on the SIM. This opens up the avenue to a large number of social engineering techniques. Additionally, if the user has provided his/her number as a recovery option for some accounts, the adversary can get access to them. The current methodology to deal with a stolen SIM is to contact your particular service provider and report a theft. The service provider then blocks the services on your SIM, but the adversary still has access to the data which is stored on the SIM. Therefore, a secure scheme is required to ensure that only legal users are able to access and utilize their SIM.