Visible to the public Biblio

Filters: Keyword is Particle measurements  [Clear All Filters]
2023-03-17
Wang, Yushi, Kamezaki, Mitsuhiro, Wang, Qichen, Sakamoto, Hiroyuki, Sugano, Shigeki.  2022.  3-Axis Force Estimation of a Soft Skin Sensor using Permanent Magnetic Elastomer (PME) Sheet with Strong Remanence. 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). :302–307.
This paper describes a prototype of a novel Permanent Magnetic Elastomer (PME) sheet based skin sensor for robotic applications. Its working principle is to use a Hall effect transducer to measure the change of magnetic field. PME is a polymer that has Neodymium particles distributed inside it, after strong magnetization for anisotropy, the PME acquires strong remanent magnetization that can be comparable to that of a permanent magnet, in this work, we made improvement of the strength of the magnetic field of PME, so it achieved magnetic strength as high as 25 mT when there is no deformation. When external forces apply on the sensor, the deformation of PME causes a change in the magnetic field due to the change in the alignment of the magnetic particles. Compared with other soft magnetic sensors that employ similar technology, we implemented linear regression method to simplify the calibration, so we focus on the point right above the magnetometer. An MLX90393 chip is installed at the bottom of the PME as the magnetometer. Experimental results show that it can measure forces from 0.01–10 N. Calibration is confirmed effective even for shear directions when the surface of PME is less than 15 x 15 mm.
ISSN: 2159-6255
2023-02-03
Sarapan, Waranyu, Boonrakchat, Nonthakorn, Paudel, Ashok, Booraksa, Terapong, Boonraksa, Promphak, Marungsri, Boonruang.  2022.  Optimal Peer-to-Peer Energy Trading by Applying Blockchain to Islanded Microgrid Considering V2G. 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :1–4.
Energy trading in small groups or microgrids is interesting to study. The energy market may overgrow in the future, so accessing the energy market by small prosumers may not be difficult anymore. This paper has modeled a decentralized P2P energy trading and exchange system in a microgrid group. The Islanded microgrid system is simulated to create a small energy producer and consumer trading situation. The simulation results show the increasing energy transactions and profit when including V2G as an energy storage device. In addition, blockchain is used for system security because a peer-to-peer marketplace has no intermediary control.
2023-01-13
Wermke, Dominik, Wöhler, Noah, Klemmer, Jan H., Fourné, Marcel, Acar, Yasemin, Fahl, Sascha.  2022.  Committed to Trust: A Qualitative Study on Security & Trust in Open Source Software Projects. 2022 IEEE Symposium on Security and Privacy (SP). :1880–1896.
Open Source Software plays an important role in many software ecosystems. Whether in operating systems, network stacks, or as low-level system drivers, software we encounter daily is permeated with code contributions from open source projects. Decentralized development and open collaboration in open source projects introduce unique challenges: code submissions from unknown entities, limited personpower for commit or dependency reviews, and bringing new contributors up-to-date in projects’ best practices & processes.In 27 in-depth, semi-structured interviews with owners, maintainers, and contributors from a diverse set of open source projects, we investigate their security and trust practices. For this, we explore projects’ behind-the-scene processes, provided guidance & policies, as well as incident handling & encountered challenges. We find that our participants’ projects are highly diverse both in deployed security measures and trust processes, as well as their underlying motivations. Based on our findings, we discuss implications for the open source software ecosystem and how the research community can better support open source projects in trust and security considerations. Overall, we argue for supporting open source projects in ways that consider their individual strengths and limitations, especially in the case of smaller projects with low contributor numbers and limited access to resources.
2022-09-30
Terzi, Sofia, Savvaidis, Charalampos, Sersemis, Athanasios, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  Decentralizing Identity Management and Vehicle Rights Delegation through Self-Sovereign Identities and Blockchain. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1217–1223.
With smart vehicles interconnected with multiple systems and other entities, whether they are people or IoT devices, the importance of a digital identity for them has emerged. We present in this paper how a Self-Sovereign Identities combined with blockchain can provide a solution to this end, in order to decentralize the identity management and provide them with capabilities to identify the other entities they interact with. Such entities can be the owners of the vehicles, other drivers and workshops that act as service providers. Two use cases are examined along with the interactions between the participants, to demonstrate how a decentralized identity management solution can take care of the necessary authentication and authorization processes. Finally, we test the system and provide the measurements to prove its feasibility in real-life deployments.
2022-09-29
López-Aguilar, Pablo, Solanas, Agusti.  2021.  Human Susceptibility to Phishing Attacks Based on Personality Traits: The Role of Neuroticism. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1363–1368.
The COVID19 pandemic situation has opened a wide range of opportunities for cyber-criminals, who take advantage of the anxiety generated and the time spent on the Internet, to undertake massive phishing campaigns. Although companies are adopting protective measures, the psychological traits of the victims are still considered from a very generic perspective. In particular, current literature determines that the model proposed in the Big-Five personality traits (i.e., Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism) might play an important role in human behaviour to counter cybercrime. However, results do not provide unanimity regarding the correlation between phishing susceptibility and neuroticism. With the aim to understand this lack of consensus, this article provides a comprehensive literature review of papers extracted from relevant databases (IEEE Xplore, Scopus, ACM Digital Library, and Web of Science). Our results show that there is not a well-established psychological theory explaining the role of neuroticism in the phishing context. We sustain that non-representative samples and the lack of homogeneity amongst the studies might be the culprits behind this lack of consensus on the role of neuroticism on phishing susceptibility.
2022-09-09
Jacq, Olivier, Salazar, Pablo Giménez, Parasuraman, Kamban, Kuusijärvi, Jarkko, Gkaniatsou, Andriana, Latsa, Evangelia, Amditis, Angelos.  2021.  The Cyber-MAR Project: First Results and Perspectives on the Use of Hybrid Cyber Ranges for Port Cyber Risk Assessment. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :409—414.
With over 80% of goods transportation in volume carried by sea, ports are key infrastructures within the logistics value chain. To address the challenges of the globalized and competitive economy, ports are digitizing at a fast pace, evolving into smart ports. Consequently, the cyber-resilience of ports is essential to prevent possible disruptions to the economic supply chain. Over the last few years, there has been a significant increase in the number of disclosed cyber-attacks on ports. In this paper, we present the capabilities of a high-end hybrid cyber range for port cyber risks awareness and training. By describing a specific port use-case and the first results achieved, we draw perspectives for the use of cyber ranges for the training of port actors in cyber crisis management.
2022-08-12
Jiang, Hongpu, Yuan, Yuyu, Guo, Ting, Zhao, Pengqian.  2021.  Measuring Trust and Automatic Verification in Multi-Agent Systems. 2021 8th International Conference on Dependable Systems and Their Applications (DSA). :271—277.
Due to the shortage of resources and services, agents are often in competition with each other. Excessive competition will lead to a social dilemma. Under the viewpoint of breaking social dilemma, we present a novel trust-based logic framework called Trust Computation Logic (TCL) for measure method to find the best partners to collaborate and automatically verifying trust in Multi-Agent Systems (MASs). TCL starts from defining trust state in Multi-Agent Systems, which is based on contradistinction between behavior in trust behavior library and in observation. In particular, a set of reasoning postulates along with formal proofs were put forward to support our measure process. Moreover, we introduce symbolic model checking algorithms to formally and automatically verify the system. Finally, the trust measure method and reported experimental results were evaluated by using DeepMind’s Sequential Social Dilemma (SSD) multi-agent game-theoretic environments.
Killedar, Vinayak, Pokala, Praveen Kumar, Sekhar Seelamantula, Chandra.  2021.  Sparsity Driven Latent Space Sampling for Generative Prior Based Compressive Sensing. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2895—2899.
We address the problem of recovering signals from compressed measurements based on generative priors. Recently, generative-model based compressive sensing (GMCS) methods have shown superior performance over traditional compressive sensing (CS) techniques in recovering signals from fewer measurements. However, it is possible to further improve the performance of GMCS by introducing controlled sparsity in the latent-space. We propose a proximal meta-learning (PML) algorithm to enforce sparsity in the latent-space while training the generator. Enforcing sparsity naturally leads to a union-of-submanifolds model in the solution space. The overall framework is named as sparsity driven latent space sampling (SDLSS). In addition, we derive the sample complexity bounds for the proposed model. Furthermore, we demonstrate the efficacy of the proposed framework over the state-of-the-art techniques with application to CS on standard datasets such as MNIST and CIFAR-10. In particular, we evaluate the performance of the proposed method as a function of the number of measurements and sparsity factor in the latent space using standard objective measures. Our findings show that the sparsity driven latent space sampling approach improves the accuracy and aids in faster recovery of the signal in GMCS.
2022-06-09
Adamik, Mark, Dudzinska, Karolina, Herskind, Adrian J., Rehm, Matthias.  2021.  The Difference Between Trust Measurement and Behavior: Investigating the Effect of Personalizing a Robot's Appearance on Trust in HRI. 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :880–885.
With the increased use of social robots in critical applications, like elder care and rehabilitation, it becomes necessary to investigate the user's trust in robots to prevent over- and under-utilization of the robotic systems. While several studies have shown how trust increases through personalised behaviour, there is a lack of research concerned with the influence of personalised physical appearance. This study explores the effect of personalised physical appearance on trust in human-robot-interaction (HRI). In an online game, 60 participants interacted with a robot, where half of the participants were asked to personalise the robot prior to the game. Trust was measured through a trust-related questionnaire as well as by evaluating user behaviour during the game. Results indicate that personalised physical appearance does not directly correlate to higher trust perceptions, however, there was significant evidence that players exhibit more trusting behaviours in a game against a personalised robot.
Luo, Ruijiao, Huang, Chao, Peng, Yuntao, Song, Boyi, Liu, Rui.  2021.  Repairing Human Trust by Promptly Correcting Robot Mistakes with An Attention Transfer Model. 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). :1928–1933.

In human-robot collaboration (HRC), human trust in the robot is the human expectation that a robot executes tasks with desired performance. A higher-level trust increases the willingness of a human operator to assign tasks, share plans, and reduce the interruption during robot executions, thereby facilitating human-robot integration both physically and mentally. However, due to real-world disturbances, robots inevitably make mistakes, decreasing human trust and further influencing collaboration. Trust is fragile and trust loss is triggered easily when robots show incapability of task executions, making the trust maintenance challenging. To maintain human trust, in this research, a trust repair framework is developed based on a human-to-robot attention transfer (H2R-AT) model and a user trust study. The rationale of this framework is that a prompt mistake correction restores human trust. With H2R-AT, a robot localizes human verbal concerns and makes prompt mistake corrections to avoid task failures in an early stage and to finally improve human trust. User trust study measures trust status before and after the behavior corrections to quantify the trust loss. Robot experiments were designed to cover four typical mistakes, wrong action, wrong region, wrong pose, and wrong spatial relation, validated the accuracy of H2R-AT in robot behavior corrections; a user trust study with 252 participants was conducted, and the changes in trust levels before and after corrections were evaluated. The effectiveness of the human trust repairing was evaluated by the mistake correction accuracy and the trust improvement.

Başer, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique: Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called’ zero-day attacks’ can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker’s behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
2022-03-08
Myasnikov, Evgeny.  2021.  Nearest Neighbor Search In Hyperspectral Data Using Binary Space Partitioning Trees. 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). :1—4.
Fast search of hyperspectral data is crucial in many practical applications ranging from classification to finding duplicate fragments in images. In this paper, we evaluate two space partitioning data structures in the task of searching hyperspectral data. In particular, we consider vp-trees and ball-trees, study several tree construction algorithms, and compare these structures with the brute force approach. In addition, we evaluate vp-trees and ball-trees with four similarity measures, namely, Euclidean Distance, Spectral Angle Mapper Bhattacharyya Angle, and Hellinger distance.
Lee, Sungwon, Ha, Jeongwon, Seo, Junho, Kim, Dongkyun.  2021.  Avoiding Content Storm Problem in Named Data Networking. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :126–128.
Recently, methods are studied to overcome various problems for Named Data Networking(NDN). Among them, a new method which can overcome content storm problem is required to reduce network congestion and deliver content packet to consumer reliably. According to the various studies, the content storm problems could be overcame by scoped interest flooding. However, because these methods do not considers not only network congestion ratio but also the number another different paths, the correspond content packets could be transmitted unnecessary and network congestion could be worse. Therefore, in this paper, we propose a new content forwarding method for NDN to overcome the content storm problem. In the proposed method, if the network is locally congested and another paths are generated, an intermediate node could postpone or withdraw the content packet transmission to reduce congestion.
2022-02-24
Lin, Junxiong, Xu, Yajing, Lu, Zhihui, Wu, Jie, Ye, Houhao, Huang, Wenbing, Chen, Xuzhao.  2021.  A Blockchain-Based Evidential and Secure Bulk-Commodity Supervisory System. 2021 International Conference on Service Science (ICSS). :1–6.
In recent years, the commodities industry has grown rapidly under the stimulus of domestic demand and the expansion of cross-border trade. It has also been combined with the rapid development of e-commerce technology in the same period to form a flexible and efficient e-commerce system for bulk commodities. However, the hasty combination of both has inspired a lack of effective regulatory measures in the bulk industry, leading to constant industry chaos. Among them, the problem of lagging evidence in regulatory platforms is particularly prominent. Based on this, we design a blockchain-based evidential and secure bulk-commodity supervisory system (abbr. BeBus). Setting different privacy protection policies for each participant in the system, the solution ensures effective forensics and tamper-proof evidence to meet the needs of the bulk business scenario.
2022-02-04
Da Veiga, Tomás, Chandler, James H., Pittiglio, Giovanni, Lloyd, Peter, Holdar, Mohammad, Onaizah, Onaizah, Alazmani, Ali, Valdastri, Pietro.  2021.  Material Characterization for Magnetic Soft Robots. 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). :335–342.
Magnetic soft robots are increasingly popular as they provide many advantages such as miniaturization and tetherless control that are ideal for applications inside the human body or in previously inaccessible locations.While non-magnetic elastomers have been extensively characterized and modelled for optimizing the fabrication of soft robots, a systematic material characterization of their magnetic counterparts is still missing. In this paper, commonly employed magnetic materials made out of Ecoflex™ 00-30 and Dragon Skin™ 10 with different concentrations of NdFeB microparticles were mechanically and magnetically characterized. The magnetic materials were evaluated under uniaxial tensile testing and their behavior analyzed through linear and hyperelastic model comparison. To determine the corresponding magnetic properties, we present a method to determine the magnetization vector, and magnetic remanence, by means of a force and torque load cell and large reference permanent magnet; demonstrating a high level of accuracy. Furthermore, we study the influence of varied magnitude impulse magnetizing fields on the resultant magnetizations. In combination, by applying improved, material-specific mechanical and magnetic properties to a 2-segment discrete magnetic robot, we show the potential to reduce simulation errors from 8.5% to 5.4%.
2021-12-21
Ba\c ser, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique : *Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called' zero-day attacks' can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker's behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
2021-03-30
Ben-Yaakov, Y., Meyer, J., Wang, X., An, B..  2020.  User detection of threats with different security measures. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.

2021-03-01
Nasir, J., Norman, U., Bruno, B., Dillenbourg, P..  2020.  When Positive Perception of the Robot Has No Effect on Learning. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :313–320.
Humanoid robots, with a focus on personalised social behaviours, are increasingly being deployed in educational settings to support learning. However, crafting pedagogical HRI designs and robot interventions that have a real, positive impact on participants' learning, as well as effectively measuring such impact, is still an open challenge. As a first effort in tackling the issue, in this paper we propose a novel robot-mediated, collaborative problem solving activity for school children, called JUSThink, aiming at improving their computational thinking skills. JUSThink will serve as a baseline and reference for investigating how the robot's behaviour can influence the engagement of the children with the activity, as well as their collaboration and mutual understanding while working on it. To this end, this first iteration aims at investigating (i) participants' engagement with the activity (Intrinsic Motivation Inventory-IMI), their mutual understanding (IMIlike) and perception of the robot (Godspeed Questionnaire); (ii) participants' performance during the activity, using several performance and learning metrics. We carried out an extensive user-study in two international schools in Switzerland, in which around 100 children participated in pairs in one-hour long interactions with the activity. Surprisingly, we observe that while a teams' performance significantly affects how team members evaluate their competence, mutual understanding and task engagement, it does not affect their perception of the robot and its helpfulness, a fact which highlights the need for baseline studies and multi-dimensional evaluation metrics when assessing the impact of robots in educational activities.
2021-02-03
Lyons, J. B., Nam, C. S., Jessup, S. A., Vo, T. Q., Wynne, K. T..  2020.  The Role of Individual Differences as Predictors of Trust in Autonomous Security Robots. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—5.

This research used an Autonomous Security Robot (ASR) scenario to examine public reactions to a robot that possesses the authority and capability to inflict harm on a human. Individual differences in terms of personality and Perfect Automation Schema (PAS) were examined as predictors of trust in the ASR. Participants (N=316) from Amazon Mechanical Turk (MTurk) rated their trust of the ASR and desire to use ASRs in public and military contexts following a 2-minute video depicting the robot interacting with three research confederates. The video showed the robot using force against one of the three confederates with a non-lethal device. Results demonstrated that individual differences factors were related to trust and desired use of the ASR. Agreeableness and both facets of the PAS (high expectations and all-or-none beliefs) demonstrated unique associations with trust using multiple regression techniques. Agreeableness, intellect, and high expectations were uniquely related to desired use for both public and military domains. This study showed that individual differences influence trust and one's desired use of ASRs, demonstrating that societal reactions to ASRs may be subject to variation among individuals.

2021-02-01
Ajenaghughrure, I. B., Sousa, S. C. da Costa, Lamas, D..  2020.  Risk and Trust in artificial intelligence technologies: A case study of Autonomous Vehicles. 2020 13th International Conference on Human System Interaction (HSI). :118–123.
This study investigates how risk influences users' trust before and after interactions with technologies such as autonomous vehicles (AVs'). Also, the psychophysiological correlates of users' trust from users” eletrodermal activity responses. Eighteen (18) carefully selected participants embark on a hypothetical trip playing an autonomous vehicle driving game. In order to stay safe, throughout the drive experience under four risk conditions (very high risk, high risk, low risk and no risk) that are based on automotive safety and integrity levels (ASIL D, C, B, A), participants exhibit either high or low trust by evaluating the AVs' to be highly or less trustworthy and consequently relying on the Artificial intelligence or the joystick to control the vehicle. The result of the experiment shows that there is significant increase in users' trust and user's delegation of controls to AVs' as risk decreases and vice-versa. In addition, there was a significant difference between user's initial trust before and after interacting with AVs' under varying risk conditions. Finally, there was a significant correlation in users' psychophysiological responses (electrodermal activity) when exhibiting higher and lower trust levels towards AVs'. The implications of these results and future research opportunities are discussed.
2021-01-20
Mindermann, K., Wagner, S..  2020.  Fluid Intelligence Doesn't Matter! Effects of Code Examples on the Usability of Crypto APIs. 2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :306—307.

Context : Programmers frequently look for the code of previously solved problems that they can adapt for their own problem. Despite existing example code on the web, on sites like Stack Overflow, cryptographic Application Programming Interfaces (APIs) are commonly misused. There is little known about what makes examples helpful for developers in using crypto APIs. Analogical problem solving is a psychological theory that investigates how people use known solutions to solve new problems. There is evidence that the capacity to reason and solve novel problems a.k.a Fluid Intelligence (Gf) and structurally and procedurally similar solutions support problem solving. Aim: Our goal is to understand whether similarity and Gf also have an effect in the context of using cryptographic APIs with the help of code examples. Method : We conducted a controlled experiment with 76 student participants developing with or without procedurally similar examples, one of two Java crypto libraries and measured the Gf of the participants as well as the effect on usability (effectiveness, efficiency, satisfaction) and security bugs. Results: We observed a strong effect of code examples with a high procedural similarity on all dependent variables. Fluid intelligence Gf had no effect. It also made no difference which library the participants used. Conclusions: Example code must be more highly similar to a concrete solution, not very abstract and generic to have a positive effect in a development task.

2020-12-01
Xu, J., Bryant, D. G., Howard, A..  2018.  Would You Trust a Robot Therapist? Validating the Equivalency of Trust in Human-Robot Healthcare Scenarios 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :442—447.

With the recent advances in computing, artificial intelligence (AI) is quickly becoming a key component in the future of advanced applications. In one application in particular, AI has played a major role - that of revolutionizing traditional healthcare assistance. Using embodied interactive agents, or interactive robots, in healthcare scenarios has emerged as an innovative way to interact with patients. As an essential factor for interpersonal interaction, trust plays a crucial role in establishing and maintaining a patient-agent relationship. In this paper, we discuss a study related to healthcare in which we examine aspects of trust between humans and interactive robots during a therapy intervention in which the agent provides corrective feedback. A total of twenty participants were randomly assigned to receive corrective feedback from either a robotic agent or a human agent. Survey results indicate trust in a therapy intervention coupled with a robotic agent is comparable to that of trust in an intervention coupled with a human agent. Results also show a trend that the agent condition has a medium-sized effect on trust. In addition, we found that participants in the robot therapist condition are 3.5 times likely to have trust involved in their decision than the participants in the human therapist condition. These results indicate that the deployment of interactive robot agents in healthcare scenarios has the potential to maintain quality of health for future generations.

Nielsen, C., Mathiesen, M., Nielsen, J., Jensen, L. C..  2019.  Changes in Heart Rate and Feeling of Safety When Led by a Rehabilitation Robot. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :580—581.

Trust is an important topic in medical human-robot interaction, since patients may be more fragile than other groups of people. This paper investigates the issue of users' trust when interacting with a rehabilitation robot. In the study, we investigate participants' heart rate and perception of safety in a scenario when their arm is led by the rehabilitation robot in two types of exercises at three different velocities. The participants' heart rate are measured during each exercise and the participants are asked how safe they feel after each exercise. The results showed that velocity and type of exercise has no significant influence on the participants' heart rate, but they do have significant influence on how safe they feel. We found that increasing velocity and longer exercises negatively influence participants' perception of safety.

Ullman, D., Malle, B. F..  2019.  Measuring Gains and Losses in Human-Robot Trust: Evidence for Differentiable Components of Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :618—619.

Human-robot trust is crucial to successful human-robot interaction. We conducted a study with 798 participants distributed across 32 conditions using four dimensions of human-robot trust (reliable, capable, ethical, sincere) identified by the Multi-Dimensional-Measure of Trust (MDMT). We tested whether these dimensions can differentially capture gains and losses in human-robot trust across robot roles and contexts. Using a 4 scenario × 4 trust dimension × 2 change direction between-subjects design, we found the behavior change manipulation effective for each of the four subscales. However, the pattern of results best supported a two-dimensional conception of trust, with reliable-capable and ethical-sincere as the major constituents.

2019-05-08
Basu, S., Chua, Y. H. Victoria, Lee, M. Wah, Lim, W. G., Maszczyk, T., Guo, Z., Dauwels, J..  2018.  Towards a data-driven behavioral approach to prediction of insider-threat. 2018 IEEE International Conference on Big Data (Big Data). :4994–5001.

Insider threats pose a challenge to all companies and organizations. Identification of culprit after an attack is often too late and result in detrimental consequences for the organization. Majority of past research on insider threat has focused on post-hoc personality analysis of known insider threats to identify personality vulnerabilities. It has been proposed that certain personality vulnerabilities place individuals to be at risk to perpetuating insider threats should the environment and opportunity arise. To that end, this study utilizes a game-based approach to simulate a scenario of intellectual property theft and investigate behavioral and personality differences of individuals who exhibit insider-threat related behavior. Features were extracted from games, text collected through implicit and explicit measures, simultaneous facial expression recordings, and personality variables (HEXACO, Dark Triad and Entitlement Attitudes) calculated from questionnaire. We applied ensemble machine learning algorithms and show that they produce an acceptable balance of precision and recall. Our results showcase the possibility of harnessing personality variables, facial expressions and linguistic features in the modeling and prediction of insider-threat.