Mell, Peter.
2022.
The Generation of Software Security Scoring Systems Leveraging Human Expert Opinion. 2022 IEEE 29th Annual Software Technology Conference (STC). :116—124.
While the existence of many security elements in software can be measured (e.g., vulnerabilities, security controls, or privacy controls), it is challenging to measure their relative security impact. In the physical world we can often measure the impact of individual elements to a system. However, in cyber security we often lack ground truth (i.e., the ability to directly measure significance). In this work we propose to solve this by leveraging human expert opinion to provide ground truth. Experts are iteratively asked to compare pairs of security elements to determine their relative significance. On the back end our knowledge encoding tool performs a form of binary insertion sort on a set of security elements using each expert as an oracle for the element comparisons. The tool not only sorts the elements (note that equality may be permitted), but it also records the strength or degree of each relationship. The output is a directed acyclic ‘constraint’ graph that provides a total ordering among the sets of equivalent elements. Multiple constraint graphs are then unified together to form a single graph that is used to generate a scoring or prioritization system.For our empirical study, we apply this domain-agnostic measurement approach to generate scoring/prioritization systems in the areas of vulnerability scoring, privacy control prioritization, and cyber security control evaluation.
Human, Soheil, Pandit, Harshvardhan J., Morel, Victor, Santos, Cristiana, Degeling, Martin, Rossi, Arianna, Botes, Wilhelmina, Jesus, Vitor, Kamara, Irene.
2022.
Data Protection and Consenting Communication Mechanisms: Current Open Proposals and Challenges. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :231—239.
Data Protection and Consenting Communication Mechanisms (DPCCMs) enable users to express their privacy decisions and manage their online consent. Thus, they can become a crucial means of protecting individuals' online privacy and agency, thereby replacing the current problematic practices such as “consent dialogues”. Based on an in-depth analysis of different DPCCMs, we propose an interdisciplinary set of factors that can be used for a comparison of such mechanisms. Moreover, we use the results from a qualitative expert study to identify some of the main multidisciplinary challenges that DPCCMs should address to become widely adopted data privacy mechanisms. We leverage both the factors and the challenges to compare two current open specifications, i.e. the Advanced Data Protection Control (ADPC) and the Global Privacy Control (GPC), and discuss future work.
Lourens, Melanie, Naureen, Ayesha, Guha, Shouvik Kumar, Ahamad, Shahanawaj, Dharamvir, Tripathi, Vikas.
2022.
Circumstantial Discussion on Security and Privacy Protection using Cloud Computing Technology. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1589—1593.
Cloud computing is becoming a demanding technology due to its flexibility, sensibility and remote accessibility. Apart from these applications of cloud computing, privacy and security are two terms that pose a circumstantial discussion. Various authors have argued on this topic that cloud computing is more secure than other data sharing and storing methods. The conventional data storing system is a computer system or smartphone storage. The argument debate also states that cloud computing is vulnerable to enormous types of attacks which make it a more concerning technology. This current study has also tried to draw the circumstantial and controversial debate on the security and privacy system of cloud computing. Primary research has been conducted with 65 cloud computing experts to understand whether a cloud computing security technique is highly secure or not. An online survey has been conducted with them where they provided their opinions based on the security and privacy system of cloud computing. Findings showed that no particular technology is available which can provide maximum security. Although the respondents agreed that blockchain is a more secure cloud computing technology; however, the blockchain also has certain threats which need to be addressed. The study has found essential encryption systems that can be integrated to strengthen security; however, continuous improvement is required.
Steffen, Samuel, Bichsel, Benjamin, Baumgartner, Roger, Vechev, Martin.
2022.
ZeeStar: Private Smart Contracts by Homomorphic Encryption and Zero-knowledge Proofs. 2022 IEEE Symposium on Security and Privacy (SP). :179—197.
Data privacy is a key concern for smart contracts handling sensitive data. The existing work zkay addresses this concern by allowing developers without cryptographic expertise to enforce data privacy. However, while zkay avoids fundamental limitations of other private smart contract systems, it cannot express key applications that involve operations on foreign data.We present ZeeStar, a language and compiler allowing non-experts to instantiate private smart contracts and supporting operations on foreign data. The ZeeStar language allows developers to ergonomically specify privacy constraints using zkay’s privacy annotations. The ZeeStar compiler then provably realizes these constraints by combining non-interactive zero-knowledge proofs and additively homomorphic encryption.We implemented ZeeStar for the public blockchain Ethereum. We demonstrated its expressiveness by encoding 12 example contracts, including oblivious transfer and a private payment system like Zether. ZeeStar is practical: it prepares transactions for our contracts in at most 54.7s, at an average cost of 339k gas.
Shetty, Pallavi, Joshi, Kapil, Raman, Dr. Ramakrishnan, Rao, K. Naga Venkateshwara, Kumar, Dr. A. Vijaya, Tiwari, Mohit.
2022.
A Framework of Artificial Intelligence for the Manufacturing and Image Classification system. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1504—1508.
Artificial intelligence (AI) has been successfully employed in industries for decades, beginning with the invention of expert systems in the 1960s and continuing through the present ubiquity of deep learning. Data-driven AI solutions have grown increasingly common as a means of supporting ever-more complicated industrial processes owing to the accessibility of affordable computer and storage infrastructure. Despite recent optimism, implementing AI to smart industrial applications still offers major difficulties. The present paper gives an executive summary of AI methodologies with an emphasis on deep learning before detailing unresolved issues in AI safety, data privacy, and data quality — all of which are necessary for completely automated commercial AI systems.
Vadlamudi, Sailaja, Sam, Jenifer.
2022.
Unified Payments Interface – Preserving the Data Privacy of Consumers. 2022 International Conference on Cyber Resilience (ICCR). :1—6.
With the advent of ease of access to the internet and an increase in digital literacy among citizens, digitization of the banking sector has throttled. Countries are now aiming for a cashless society. The introduction of a Unified Payment Interface (UPI) by the National Payments Corporation of India (NPCI) in April 2016 is a game-changer for cashless models. UPI payment model is currently considered the world’s most advanced payment system, and we see many countries adopting this cashless payment mode. With the increase in its popularity, there arises the increased need to strengthen the security posture of the payment solution. In this work, we explore the privacy challenges in the existing data flow of UPI models and propose approaches to preserve the privacy of customers using the Unified Payments Interface.
Moni, Shafika Showkat, Gupta, Deepti.
2022.
Secure and Efficient Privacy-preserving Authentication Scheme using Cuckoo Filter in Remote Patient Monitoring Network. 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA). :208—216.
With the ubiquitous advancement in smart medical devices and systems, the potential of Remote Patient Monitoring (RPM) network is evolving in modern healthcare systems. The medical professionals (doctors, nurses, or medical experts) can access vitals and sensitive physiological information about the patients and provide proper treatment to improve the quality of life through the RPM network. However, the wireless nature of communication in the RPM network makes it challenging to design an efficient mechanism for secure communication. Many authentication schemes have been proposed in recent years to ensure the security of the RPM network. Pseudonym, digital signature, and Authenticated Key Exchange (AKE) protocols are used for the Internet of Medical Things (IoMT) to develop secure authorization and privacy-preserving communication. However, traditional authentication protocols face overhead challenges due to maintaining a large set of key-pairs or pseudonyms results on the hospital cloud server. In this research work, we identify this research gap and propose a novel secure and efficient privacy-preserving authentication scheme using cuckoo filters for the RPM network. The use of cuckoo filters in our proposed scheme provides an efficient way for mutual anonymous authentication and a secret shared key establishment process between medical professionals and patients. Moreover, we identify the misbehaving sensor nodes using a correlation-based anomaly detection model to establish secure communication. The security analysis and formal security validation using SPAN and AVISPA tools show the robustness of our proposed scheme against message modification attacks, replay attacks, and man-in-the-middle attacks.
Khokhlov, Igor, Okutan, Ahmet, Bryla, Ryan, Simmons, Steven, Mirakhorli, Mehdi.
2022.
Automated Extraction of Software Names from Vulnerability Reports using LSTM and Expert System. 2022 IEEE 29th Annual Software Technology Conference (STC). :125—134.
Software vulnerabilities are closely monitored by the security community to timely address the security and privacy issues in software systems. Before a vulnerability is published by vulnerability management systems, it needs to be characterized to highlight its unique attributes, including affected software products and versions, to help security professionals prioritize their patches. Associating product names and versions with disclosed vulnerabilities may require a labor-intensive process that may delay their publication and fix, and thereby give attackers more time to exploit them. This work proposes a machine learning method to extract software product names and versions from unstructured CVE descriptions automatically. It uses Word2Vec and Char2Vec models to create context-aware features from CVE descriptions and uses these features to train a Named Entity Recognition (NER) model using bidirectional Long short-term memory (LSTM) networks. Based on the attributes of the product names and versions in previously published CVE descriptions, we created a set of Expert System (ES) rules to refine the predictions of the NER model and improve the performance of the developed method. Experiment results on real-life CVE examples indicate that using the trained NER model and the set of ES rules, software names and versions in unstructured CVE descriptions could be identified with F-Measure values above 0.95.
Schindler, Christian, Atas, Müslüm, Strametz, Thomas, Feiner, Johannes, Hofer, Reinhard.
2022.
Privacy Leak Identification in Third-Party Android Libraries. 2022 Seventh International Conference On Mobile And Secure Services (MobiSecServ). :1—6.
Developers of mobile applications rely on the trust of their customers. On the one hand the requirement exists to create feature-rich and secure apps, which adhere to privacy standards to not deliberately disclose user information. On the other hand the development process must be streamlined to reduce costs. Here third-party libraries come into play. Inclusion of many, possibly nested libraries pose security risks, app-creators are often not aware of. This paper presents a way to combine free open-source tools to support developers in checking their application that it does not induce security issues by using third-party libraries. The tools FlowDroid, Frida, and mitm-proxy are used in combination in a simple and viable way to perform checks to identify privacy leaks of third-party apps. Our proposed setup and configuration empowers average app developers to preserve user privacy without being dedicated security experts and without expensive external advice.
Tomaras, Dimitrios, Tsenos, Michail, Kalogeraki, Vana.
2022.
A Framework for Supporting Privacy Preservation Functions in a Mobile Cloud Environment. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :286—289.
The problem of privacy protection of trajectory data has received increasing attention in recent years with the significant grow in the volume of users that contribute trajectory data with rich user information. This creates serious privacy concerns as exposing an individual's privacy information may result in attacks threatening the user's safety. In this demonstration we present TP$^\textrm3$ a novel practical framework for supporting trajectory privacy preservation in Mobile Cloud Environments (MCEs). In TP$^\textrm3$, non-expert users submit their trajectories and the system is responsible to determine their privacy exposure before sharing them to data analysts in return for various benefits, e.g. better recommendations. TP$^\textrm3$ makes a number of contributions: (a) It evaluates the privacy exposure of the users utilizing various privacy operations, (b) it is latency-efficient as it implements the privacy operations as serverless functions which can scale automatically to serve an increasing number of users with low latency, and (c) it is practical and cost-efficient as it exploits the serverless model to adapt to the demands of the users with low operational costs for the service provider. Finally, TP$^\textrm3$'s Web-UI provides insights to the service provider regarding the performance and the respective revenue from the service usage, while enabling the user to submit the trajectories with recommended preferences of privacy.