Biblio
In order to improve the buffering performance of the data encrypted by CP-ABE (ciphertext policy attribute based encryption), this paper proposed a Markov prefetching model based on attribute classification. The prefetching model combines the access strategy of CP-ABE encrypted file, establishes the user relationship network according to the attribute value of the user, classifies the user by the modularity-based community partitioning algorithm, and establishes a Markov prefetching model based on attribute classification. In comparison with the traditional Markov prefetching model and the classification-based Markov prefetching model, the attribute-based Markov prefetching model is proposed in this paper has higher prefetch accuracy and coverage.
With each Windows operating system Microsoft introduces new features to its users. Newly added features present a challenge to digital forensics examiners as they are not analyzed or tested enough. One of the latest features, introduced in Windows 10 version 1909 is Windows Sandbox; a lightweight, temporary, environment for running untrusted applications. Because of the temporary nature of the Sandbox and insufficient documentation, digital forensic examiners are facing new challenges when examining this newly added feature which can be used to hide different illegal activities. Throughout this paper, the focus will be on analyzing different Windows artifacts and event logs, with various tools, left behind as a result of the user interaction with the Sandbox feature on a clear virtual environment. Additionally, the setup of testing environment will be explained, the results of testing and interpretation of the findings will be presented, as well as open-source tools used for the analysis.
We consider the possibility of detecting malicious behaviors of the advanced persistent threat (APT) at endpoints during incident response or forensics investigations. Specifically, we study the case where third-party sensors are not available; our observables are obtained solely from inherent digital artifacts of Windows operating systems. What is of particular interest is an artifact called the Application Compatibility Cache (Shimcache). As it is not apparent from the Shimcache when a file has been executed, we propose an algorithm of estimating the time of file execution up to an interval. We also show guarantees of the proposed algorithm's performance and various possible extensions that can improve the estimation. Finally, combining this approach with methods of machine learning, as well as information from other digital artifacts, we design a prototype system called XTEC and demonstrate that it can help hunt for the APT in a real-world case study.
Behavioral malware detection aims to improve on the performance of static signature-based techniques used by anti-virus systems, which are less effective against modern polymorphic and metamorphic malware. Behavioral malware classification aims to go beyond the detection of malware by also identifying a malware's family according to a naming scheme such as the ones used by anti-virus vendors. Behavioral malware classification techniques use run-time features, such as file system or network activities, to capture the behavioral characteristic of running processes. The increasing volume of malware samples, diversity of malware families, and the variety of naming schemes given to malware samples by anti-virus vendors present challenges to behavioral malware classifiers. We describe a behavioral classifier that uses a Convolutional Recurrent Neural Network and data from Microsoft Windows Prefetch files. We demonstrate the model's improvement on the state-of-the-art using a large dataset of malware families and four major anti-virus vendor naming schemes. The model is effective in classifying malware samples that belong to common and rare malware families and can incrementally accommodate the introduction of new malware samples and families.
In military operations, Commander's Intent describes the desired end state and purpose of the operation, expressed in a concise and clear manner. Command by intent is a paradigm that empowers subordinate units to exercise measured initiative to meet mission goals and accept prudent risk within commander's intent. It improves agility of military operations by allowing exploitation of local opportunities without an explicit directive from the commander to do so. This paper discusses what the paradigm entails in terms of architectural decisions for data fusion systems tasked with real-time information collection to satisfy operational mission goals. In our system, information needs of decisions are expressed at a high level, and shared among relevant nodes. The selected nodes, then, jointly operate to meet mission information needs by forwarding and caching relevant data without explicit directives regarding the objects to fetch and sources to contact. A preliminary evaluation of the system is presented using a target tracking application, set in the context of a NATO-based mission scenario, called Anglova. Evaluation results show that delegating some decision authority to the data fusion system (in terms of objects to fetch and sources to contact) allows it to save more network resources, while also increasing mission success rate. The system is therefore particularly well-suited to operation in partially denied or contested environments, where resource bottlenecks caused by adversarial activity impair one's ability to collect real-time information for mission-critical decision making.
Map-based services are becoming increasingly important in many applications. These services often need to show geospatial objects (e.g., cities and parks) in Web browsers, and being able to retrieve such objects efficiently is critical to achieving a low response time for user queries. In this demonstration we present a browser-based caching technique to store and load geospatial objects on a map in a Web page. The technique employs a hierarchical structure to store and index polygons, and does intelligent prefetching and cache replacement by utilizing the information about the user's recent browser activities. We demonstrate the usage of the technique in an application called TwitterMap for visualizing more than 1 billion tweets in real time. We show its effectiveness by using different replacement policies. The technique is implemented as a general-purpose Javascript library, making it suitable for other applications as well.