Visible to the public Biblio

Filters: Keyword is Electrodes  [Clear All Filters]
2023-05-12
Yang, Wendi, Zhang, Ming, Li, Chuan, Wang, Zutao, Xiao, Menghan, Li, Jiawei, Li, Dingchen, Zheng, Wei.  2022.  Influence of Magnetic Field on Corona Discharge Characteristics under Different Humidity Conditions. 2022 IEEE 3rd China International Youth Conference on Electrical Engineering (CIYCEE). :1–7.
The humidity in the air parameters has an impact on the characteristics of corona discharge, and the magnetic field also affects the electron movement of corona discharge. We build a constant humidity chamber and use a wire-mesh electrode device to study the effects of humidity and magnetic field on the discharge. The enhancement of the discharge by humidity is caused by the combination of water vapor molecules and ions generated by the discharge into hydrated ions. By building a “water flow channel” between the high voltage wire electrode and the ground mesh electrode, the ions can pass more smoothly, thereby enhanced discharge. The ions are subjected to the Lorentz force in the electromagnetic field environment, the motion state of the ions changes, and the larmor motion in the electromagnetic field increases the movement path, the collision between the gas molecules increases, and more charged particles are generated, which increases the discharge current. During the period, the electrons and ions generated by the ionization of the wire electrode leave the ionization zone faster, which reduces the inhibitory effect of the ion aggregation on the discharge and promotes the discharge.
2022-12-07
Suzuki, Ryoto, Suzuki, Masashi, Kakio, Shoji, Kimura, Noritoshi.  2022.  Shear-Horizontal Surface Acoustic Wave on Ca3TaGa3Si2O14 Piezoelectric Single Crystal. 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—2.
SummaryIn this study, the propagation and resonance properties of shear-horizontal surface acoustic waves (SH SAWs) on a rotated Y-cut 90°X propagating Ca3TaGa3Si2O14 (CTGS) with a Au- or Al-interdigital transducer (IDT) were investigated theoretically and experimentally. It was found that not only a high-density Au-IDT but also a conventional Al-IDT enables the energy trapping of SH SAW in the vicinity of the surface. For both IDTs, the effective electromechanical coupling factor of about 1.2% and the zero temperature coefficient of frequency can be simultaneously obtained by adjusting the cut angle of CTGS and the electrode film thickness.
Chedurupalli, Shivakumar, Karthik Reddy, K, Akhil Raman, T S, James Raju, K.C.  2022.  High Overtone Bulk Acoustic Resonator with improved effective coupling coefficient. 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF). :1—4.
A High Overtone Bulk Acoustic Wave Resonator (HBAR) is fabricated with the active material being Ba0.5Sr0.5TiO3 (BST). Owing to its strong electrostrictive property, the BST needs an external dc voltage to yield an electromechanical coupling. The variations in resonances with respect to varying dc fields are noted and analyzed with the aid of an Resonant Spectrum Method (RSM) model. Effective coupling coefficient \$(\textbackslashmathrmK\_\textbackslashmathrme\textbackslashmathrmf\textbackslashmathrmfˆ2(%))\$ in the case of employed MIM based structure is observed and the comparisons are drawn with the corresponding values of the CPC structures. An improvement of 70% in the value of \$\textbackslashmathrmK\_\textbackslashmathrme\textbackslashmathrmf\textbackslashmathrmfˆ2\$(%)at 1.34 GHz is witnessed in MIM structures because of direct access to the bottom electrode of the structure.
2022-03-22
Love, Fred, Leopold, Jennifer, McMillin, Bruce, Su, Fei.  2021.  Discriminative Pattern Mining for Runtime Security Enforcement of Cyber-Physical Point-of-Care Medical Technology. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1066—1072.
Point-of-care diagnostics are a key technology for various safety-critical applications from providing diagnostics in developing countries lacking adequate medical infrastructure to fight infectious diseases to screening procedures for border protection. Digital microfluidics biochips are an emerging technology that are increasingly being evaluated as a viable platform for rapid diagnosis and point-of-care field deployment. In such a technology, processing errors are inherent. Cyber-physical digital biochips offer higher reliability through the inclusion of automated error recovery mechanisms that can reconfigure operations performed on the electrode array. Recent research has begun to explore security vulnerabilities of digital microfluidic systems. This paper expands previous work that exploits vulnerabilities due to implicit trust in the error recovery mechanism. In this work, a discriminative data mining approach is introduced to identify frequent bioassay operations that can be cyber-physically attested for runtime security protection.
2021-12-20
Zhou, Changjie, Xiao, Dongping, Bao, Yang.  2021.  Numerical Analysis of the Motion Characteristics of Combustion Particles in Gap Based on Multi-Physical Field Coupling. 2021 International Conference on Electrical Materials and Power Equipment (ICEMPE). :1–4.
In case of wildfire, particles generated in combustion are in complex law of motion under the influence of flame temperature, airflow and lots of electrons and ions. They would distort the space electric field, and lead to gap discharge. This paper develops a multi-physics coupling calculation model of fluid, temperature, electric field and particle movement by combining the rod-plate gap experiment that simulates the wildfire condition. It analyzes the motion state of ash particles in flames, studies the charged particles of different polarity separately, and explores the impact of particle properties on the electric field of gap space by combining the distribution of particles. Results have shown that there are differences in the motion state of charged particles of different polarity, and the electrode will absorb some particles with different charges, while charged particles with the same polarity as the electrode will move away from the electrode in random motion. Particles of different properties (particle size, relative dielectric constant) have different impacts on the electric field of gap space, but they all promote the discharge propagation.
2021-05-03
Sharma, Mohit, Strathman, Hunter J., Walker, Ross M..  2020.  Verification of a Rapidly Multiplexed Circuit for Scalable Action Potential Recording. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–1.
This report presents characterizations of in vivo neural recordings performed with a CMOS multichannel chip that uses rapid multiplexing directly at the electrodes, without any pre-amplification or buffering. Neural recordings were taken from a 16-channel microwire array implanted in rodent cortex, with comparison to a gold-standard commercial bench-top recording system. We were able to record well-isolated threshold crossings from 10 multiplexed electrodes and typical local field potential waveforms from 16, with strong agreement with the standard system (average SNR = 2.59 and 3.07 respectively). For 10 electrodes, the circuit achieves an effective area per channel of 0.0077 mm2, which is \textbackslashtextgreater5× smaller than typical multichannel chips. Extensive characterizations of noise and signal quality are presented and compared to fundamental theory, as well as results from in vivo and in vitro experiments. By demonstrating the validation of rapid multiplexing directly at the electrodes, this report confirms it as a promising approach for reducing circuit area in massively-multichannel neural recording systems, which is crucial for scaling recording site density and achieving large-scale sensing of brain activity with high spatiotemporal resolution.
2020-11-02
Lin, Chun-Yu, Huang, Juinn-Dar, Yao, Hailong, Ho, Tsung-Yi.  2018.  A Comprehensive Security System for Digital Microfluidic Biochips. 2018 IEEE International Test Conference in Asia (ITC-Asia). :151—156.

Digital microfluidic biochips (DMFBs) have become popular in the healthcare industry recently because of its lowcost, high-throughput, and portability. Users can execute the experiments on biochips with high resolution, and the biochips market therefore grows significantly. However, malicious attackers exploit Intellectual Property (IP) piracy and Trojan attacks to gain illegal profits. The conventional approaches present defense mechanisms that target either IP piracy or Trojan attacks. In practical, DMFBs may suffer from the threat of being attacked by these two attacks at the same time. This paper presents a comprehensive security system to protect DMFBs from IP piracy and Trojan attacks. We propose an authentication mechanism to protect IP and detect errors caused by Trojans with CCD cameras. By our security system, we could generate secret keys for authentication and determine whether the bioassay is under the IP piracy and Trojan attacks. Experimental results demonstrate the efficacy of our security system without overhead of the bioassay completion time.

2020-02-26
Gountia, Debasis, Roy, Sudip.  2019.  Checkpoints Assignment on Cyber-Physical Digital Microfluidic Biochips for Early Detection of Hardware Trojans. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :16–21.

Present security study involving analysis of manipulation of individual droplets of samples and reagents by digital microfluidic biochip has remarked that the biochip design flow is vulnerable to piracy attacks, hardware Trojans attacks, overproduction, Denial-of-Service attacks, and counterfeiting. Attackers can introduce bioprotocol manipulation attacks against biochips used for medical diagnosis, biochemical analysis, and frequent diseases detection in healthcare industry. Among these attacks, hardware Trojans have created a major threatening issue in its security concern with multiple ways to crack the sensitive data or alter original functionality by doing malicious operations in biochips. In this paper, we present a systematic algorithm for the assignment of checkpoints required for error-recovery of available bioprotocols in case of hardware Trojans attacks in performing operations by biochip. Moreover, it can guide the placement and timing of checkpoints so that the result of an attack is reduced, and hence enhance the security concerns of digital microfluidic biochips. Comparative study with traditional checkpoint schemes demonstrate the superiority of the proposed algorithm without overhead of the bioprotocol completion time with higher error detection accuracy.

2019-03-25
Ferres, E., Immler, V., Utz, A., Stanitzki, A., Lerch, R., Kokozinski, R..  2018.  Capacitive Multi-Channel Security Sensor IC for Tamper-Resistant Enclosures. 2018 IEEE SENSORS. :1–4.
Physical attacks are a serious threat for embedded devices. Since these attacks are based on physical interaction, sensing technology is a key aspect in detecting them. For highest security levels devices in need of protection are placed into tamper-resistant enclosures. In this paper we present a capacitive multi-channel security sensor IC in a 350 nm CMOS technology. This IC measures more than 128 capacitive sensor nodes of such an enclosure with an SNR of 94.6 dB across a 16×16 electrode matrix in just 19.7 ms. The theoretical sensitivity is 35 aF which is practically limited by noise to 460 aF. While this is similar to capacitive touch technology, it outperforms available solutions of this domain with respect to precision and speed.