Biblio
Energy Internet is a typical cyber-physical system (CPS), in which the disturbance on cyber part may result in the operation risks on the physical part. In order to perform CPS assessment and research the interactive influence between cyber part and physical part, an integrated energy internet CPS model which adopts information flow matrix, energy control flow matrix and information energy hybrid flow matrix is proposed in this paper. The proposed model has a higher computational efficacy compared with simulation based approaches. Then, based on the proposed model, the influence of cyber disturbances such as data dislocation, data delay and data error on the physical part are studied. Finally, a 3 MW PET based energy internet CPS is built using PSCAD/EMTDC software. The simulation results prove the validity of the proposed model and the correctness of the interactive influence analysis.
Modern vehicles in Intelligent Transportation Systems (ITS) can communicate with each other as well as roadside infrastructure units (RSUs) in order to increase transportation efficiency and road safety. For example, there are techniques to alert drivers in advance about traffic incidents and to help them avoid congestion. Threats to these systems, on the other hand, can limit the benefits of these technologies. Securing ITS itself is an important concern in ITS design and implementation. In this paper, we provide a security model of ITS which extends the classic layered network security model with transportation security and information security, and gives a reference for designing ITS architectures. Based on this security model, we also present a classification of ITS threats for defense. Finally a proof-of-concept example with malicious nodes in an ITS system is also given to demonstrate the impact of attacks. We analyzed the threat of malicious nodes and their effects to commuters, like increasing toll fees, travel distances, and travel times etc. Experimental results from simulations based on Veins shows the threats will bring about 43.40% more total toll fees, 39.45% longer travel distances, and 63.10% more travel times.