Visible to the public Biblio

Filters: Keyword is Stochastic game  [Clear All Filters]
2023-05-12
Zhang, Qirui, Meng, Siqi, Liu, Kun, Dai, Wei.  2022.  Design of Privacy Mechanism for Cyber Physical Systems: A Nash Q-learning Approach. 2022 China Automation Congress (CAC). :6361–6365.

This paper studies the problem of designing optimal privacy mechanism with less energy cost. The eavesdropper and the defender with limited resources should choose which channel to eavesdrop and defend, respectively. A zero-sum stochastic game framework is used to model the interaction between the two players and the game is solved through the Nash Q-learning approach. A numerical example is given to verify the proposed method.

ISSN: 2688-0938

2022-10-20
Ma, Tengchao, Xu, Changqiao, Zhou, Zan, Kuang, Xiaohui, Zhong, Lujie, Grieco, Luigi Alfredo.  2020.  Intelligent-Driven Adapting Defense Against the Client-Side DNS Cache Poisoning in the Cloud. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1—6.
A new Domain Name System (DNS) cache poisoning attack aiming at clients has emerged recently. It induced cloud users to visit fake web sites and thus reveal information such as account passwords. However, the design of current DNS defense architecture does not formally consider the protection of clients. Although the DNS traffic encryption technology can alleviate this new attack, its deployment is as slow as the new DNS architecture. Thus we propose a lightweight adaptive intelligent defense strategy, which only needs to be deployed on the client without any configuration support of DNS. Firstly, we model the attack and defense process as a static stochastic game with incomplete information under bounded rationality conditions. Secondly, to solve the problem caused by uncertain attack strategies and large quantities of game states, we adopt a deep reinforcement learning (DRL) with guaranteed monotonic improvement. Finally, through the prototype system experiment in Alibaba Cloud, the effectiveness of our method is proved against multiple attack modes with a success rate of 97.5% approximately.
Jiang, Luanjuan, Chen, Xin.  2021.  Understanding the impact of cyber-physical correlation on security analysis of Cyber-Physical Systems. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :529—534.
Cyber-Physical Systems(CPS) have been experiencing a fast-growing process in recent decades, and related security issues also have become more important than ever before. To design an efficient defensive policy for operators and controllers is the utmost task to be considered. In this paper, a stochastic game-theoretic model is developed to study a CPS security problem by considering the interdependence between cyber and physical spaces of a CPS. The game model is solved with Minimax Q-learning for finding the mixed strategies equilibria. The numerical simulation revealed that the defensive factors and attack cost can affect the policies adopted by the system. From the perspective of the operator of a CPS, increasing successful defense probability in the phrase of disruption will help to improve the probability of defense strategy when there is a correlation between the cyber layer and the physical layer in a CPS. On the contrary side, the system defense probability will decrease as the total cost of the physical layer increases.
2022-05-10
Halabi, Talal.  2021.  Adaptive Security Risk Mitigation in Edge Computing: Randomized Defense Meets Prospect Theory. 2021 IEEE/ACM Symposium on Edge Computing (SEC). :432–437.

Edge computing supports the deployment of ubiquitous, smart services by providing computing and storage closer to terminal devices. However, ensuring the full security and privacy of computations performed at the edge is challenging due to resource limitation. This paper responds to this challenge and proposes an adaptive approach to defense randomization among the edge data centers via a stochastic game, whose solution corresponds to the optimal security deployment at the network's edge. Moreover, security risk is evaluated subjectively based on Prospect Theory to reflect realistic scenarios where the attacker and the edge system do not similarly perceive the status of the infrastructure. The results show that a non-deterministic defense policy yields better security compared to a static defense strategy.

2020-04-03
Liau, David, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.  2019.  Evaluation Framework for Future Privacy Protection Systems: A Dynamic Identity Ecosystem Approach. 2019 17th International Conference on Privacy, Security and Trust (PST). :1—3.
In this paper, we leverage previous work in the Identity Ecosystem, a Bayesian network mathematical representation of a person's identity, to create a framework to evaluate identity protection systems. Information dynamic is considered and a protection game is formed given that the owner and the attacker both gain some level of control over the status of other PII within the dynamic Identity Ecosystem. We present a policy iteration algorithm to solve the optimal policy for the game and discuss its convergence. Finally, an evaluation and comparison of identity protection strategies is provided given that an optimal policy is used against different protection policies. This study is aimed to understand the evolutionary process of identity theft and provide a framework for evaluating different identity protection strategies and future privacy protection system.
2018-10-26
Xu, Zhiheng, Zhu, Quanyan.  2017.  A Game-Theoretic Approach to Secure Control of Communication-Based Train Control Systems Under Jamming Attacks. Proceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles. :27–34.

To meet the growing railway-transportation demand, a new train control system, communication-based train control (CBTC) system, aims to maximize the ability of train lines by reducing the headway of each train. However, the wireless communications expose the CBTC system to new security threats. Due to the cyber-physical nature of the CBTC system, a jamming attack can damage the physical part of the train system by disrupting the communications. To address this issue, we develop a secure framework to mitigate the impact of the jamming attack based on a security criterion. At the cyber layer, we apply a multi-channel model to enhance the reliability of the communications and develop a zero-sum stochastic game to capture the interactions between the transmitter and jammer. We present analytical results and apply dynamic programming to find the equilibrium of the stochastic game. Finally, the experimental results are provided to evaluate the performance of the proposed secure mechanism.

2018-04-04
Narwal, P., Singh, S. N., Kumar, D..  2017.  Game-theory based detection and prevention of DoS attacks on networking node in open stack private cloud. 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). :481–486.

Security at virtualization level has always been a major issue in cloud computing environment. A large number of virtual machines that are hosted on a single server by various customers/client may face serious security threats due to internal/external network attacks. In this work, we have examined and evaluated these threats and their impact on OpenStack private cloud. We have also discussed the most popular DOS (Denial-of-Service) attack on DHCP server on this private cloud platform and evaluated the vulnerabilities in an OpenStack networking component, Neutron, due to which this attack can be performed through rogue DHCP server. Finally, a solution, a game-theory based cloud architecture, that helps to detect and prevent DOS attacks in OpenStack has been proposed.