Visible to the public Biblio

Filters: Keyword is wireless communications  [Clear All Filters]
2022-10-16
Bouhafs, Faycal, den Hartog, Frank, Raschella, Alessandro, Mackay, Michael, Shi, Qi, Sinanovic, Sinan.  2020.  Realizing Physical Layer Security in Large Wireless Networks using Spectrum Programmability. 2020 IEEE Globecom Workshops (GC Wkshps. :1–6.
This paper explores a practical approach to securing large wireless networks by applying Physical Layer Security (PLS). To date, PLS has mostly been seen as an information theory concept with few practical implementations. We present an Access Point (AP) selection algorithm that uses PLS to find an AP that offers the highest secrecy capacity to a legitimate user. We then propose an implementation of this algorithm using the novel concept of spectrum programming which extends Software-Defined Networking to the physical and data-link layers and makes wireless network management and control more flexible and scalable than traditional platforms. Our Wi-Fi network evaluation results show that our approach outperforms conventional solutions in terms of security, but at the expense of communication capacity, thus identifying a trade-off between security and performance. These results encourage implementation and extension to further wireless technologies.
2022-02-03
Rishikesh, Bhattacharya, Ansuman, Thakur, Atul, Banda, Gourinath, Ray, Rajarshi, Halder, Raju.  2021.  Secure Communication System Implementation for Robot-based Surveillance Applications. 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA). :270—275.
Surveillance systems involve a camera module (at a fixed location) connected/streaming video via Internet Protocol to a (video) server. In our IMPRINT consortium project, by mounting miniaturised camera module/s on mobile quadruped-lizard like robots, we developed a stealth surveillance system, which could be very useful as a monitoring system in hostage situations. In this paper, we report about the communication system that enables secure transmission of: Live-video from robots to a server, GPS-coordinates of robots to the server and Navigation-commands from server to robots. Since the end application is for stealth surveillance, often can involve sensitive data, data security is a crucial concern, especially when data is transmitted through the internet. We use the RC4 algorithm for video transmission; while the AES algorithm is used for GPS data and other commands’ data transmission. Advantages of the developed system is easy to use for its web interface which is provided on the control station. This communication system, because of its internet-based communication, it is compatible with any operating system environment. The lightweight program runs on the control station (on the server side) and robot body that leads to less memory consumption and faster processing. An important requirement in such hostage surveillance systems is fast data processing and data-transmission rate. We have implemented this communication systems with a single-board computer having GPU that performs better in terms of speed of transmission and processing of data.
2020-11-09
Ekşim, A., Demirci, T..  2019.  Ultimate Secrecy in Wireless Communications. 2019 11th International Conference on Electrical and Electronics Engineering (ELECO). :682–686.
In this work, communication secrecy in the physical layer for various radio frequencies is examined. Frequencies with the highest level of secrecy in 1-1000 GHz range and their level of communication secrecy are derived. The concept of ultimate secrecy in wireless communications is proposed. Attenuation lines and ranges of both detection and ultimate secrecy are calculated for transmitter powers from 1 W to 1000 W. From results, frequencies with the highest potential to apply bandwidth saving method known as frequency reuse are devised. Commonly used secrecy benchmarks for the given conditions are calculated. Frequencies with the highest attenuation are devised and their ranges of both detection and ultimate secrecy are calculated.
2020-10-26
Tang, Di, Gu, Jian, Yu, You, Yang, Yuanyuan, Han, Weijia, Ma, Xiao.  2018.  Source-Location Privacy Based on Dynamic Mix-Ring in Wireless Sensor Networks. 2018 International Conference on Computing, Networking and Communications (ICNC). :327–331.
Wireless sensor networks (WSNs) have the potential to be widely used in many applications. Due to lack of a protected physical boundary, wireless communications are vulnerable to unauthorized interception and detection. While encryption can provide the integrality and confidentiality of the message, it is much more difficult to adequately address the source location privacy. For static deployed WSNs, adversary can easily perform trace-back attack to locate the source nodes by monitoring the traffic. The eavesdropped messages will leak the direction information of the source location by statistic analysis on traffic flow. In this paper, we propose a theoretical analysis measurement to address the quantitative amount of the information leakage from the eavesdropped message. Through this scheme, we analyze the conditions that satisfy the optimum protection for routing protocol design. Based on the proposed principle, we design a routing algorithm to minimize the information leakage by distributing the routing path uniformly in WSN. The theoretical analysis shows the proposed routing algorithm can provide approximate maximization of source location privacy. The simulation results show the proposed routing algorithm is very efficient and can be used for practical applications.
2020-09-04
Khan, Samar, Khodke, Priti A., Bhagat, Amol P..  2018.  An Approach to Fault Tolerant Key Generation and Secure Spread Spectrum Communiction. 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). :1—6.
Wireless communications have encountered a considerable improvement and have integrated human life through various applications, mainly by the widespread of mobile ad hoc and sensor networks. A fundamental characteristic of wireless communications are in their broadcast nature, which allows accessibility of information without placing restrictions on a user's location. However, accessibility also makes wireless communications vulnerable to eavesdropping. To enhance the security of network communication, we propose a separate key generation server which is responsible for key generation using complex random algorithm. The key will remain in database in encrypted format. To prevent brute force attack, we propose various group key generation algorithms in which every group will have separate group key to verify group member's identity. The group key will be verified with the session information before decryption, so that our system will prevent attack if any attacker knows the group key. To increase the security of the system, we propose three level encryption securities: Client side encryption using AES, Server side encryption using AES, and Artificial noise generation and addition. By using this our system is free from brute force attack as we are using three level message security and complex Random key generation algorithms.
2020-08-10
Li, Wei, Mclernon, Des, Wong, Kai-Kit, Wang, Shilian, Lei, Jing, Zaidi, Syed Ali Raza.  2019.  Asymmetric Physical Layer Encryption for Wireless Communications. IEEE Access. 7:46959–46967.
In this paper, we establish a cryptographic primitive for wireless communications. An asymmetric physical layer encryption (PLE) scheme based on elliptic curve cryptography is proposed. Compared with the conventional symmetric PLE, asymmetric PLE avoids the need of key distribution on a private channel, and it has more tools available for processing complex-domain signals to confuse possible eavesdroppers when compared with upper-layer public key encryption. We use quantized information entropy to measure the constellation confusion degree. The numerical results show that the proposed scheme provides greater confusion to eavesdroppers and yet does not affect the bit error rate (BER) of the intended receiver (the information entropy of the constellation increases to 17.5 for 9-bit quantization length). The scheme also has low latency and complexity [O(N2.37), where N is a fixed block size], which is particularly attractive for implementation.
2020-02-17
Broomandi, Fateme, Ghasemi, Abdorasoul.  2019.  An Improved Cooperative Cell Outage Detection in Self-Healing Het Nets Using Optimal Cooperative Range. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1956–1960.
Heterogeneous Networks (Het Nets) are introduced to fulfill the increasing demands of wireless communications. To be manageable, it is expected that these networks are self-organized and in particular, self-healing to detect and relief faults autonomously. In the Cooperative Cell Outage Detection (COD), the Macro-Base Station (MBS) and a group of Femto-Base Stations (FBSs) in a specific range are cooperatively communicating to find out if each FBS is working properly or not. In this paper, we discuss the impacts of the cooperation range on the detection delay and accuracy and then conclude that there is an optimal amount for cooperation range which maximizes detection accuracy. We then derive the optimal cooperative range that improves the detection accuracy by using network parameters such as FBS's transmission power, noise power, shadowing fading factor, and path-loss exponent and investigate the impacts of these parameters on the optimal cooperative range. The simulation results show the optimal cooperative range that we proposed maximizes the detection accuracy.
2019-01-31
Arfaoui, A., Kribeche, A., Boudia, O. R. M., Letaifa, A. Ben, Senouci, S. M., Hamdi, M..  2018.  Context-Aware Authorization and Anonymous Authentication in Wireless Body Area Networks. 2018 IEEE International Conference on Communications (ICC). :1–7.

With the pervasiveness of the Internet of Things (IoT) and the rapid progress of wireless communications, Wireless Body Area Networks (WBANs) have attracted significant interest from the research community in recent years. As a promising networking paradigm, it is adopted to improve the healthcare services and create a highly reliable ubiquitous healthcare system. However, the flourish of WBANs still faces many challenges related to security and privacy preserving. In such pervasive environment where the context conditions dynamically and frequently change, context-aware solutions are needed to satisfy the users' changing needs. Therefore, it is essential to design an adaptive access control scheme that can simultaneously authorize and authenticate users while considering the dynamic context changes. In this paper, we propose a context-aware access control and anonymous authentication approach based on a secure and efficient Hybrid Certificateless Signcryption (H-CLSC) scheme. The proposed scheme combines the merits of Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) and Identity-Based Broadcast Signcryption (IBBSC) in order to satisfy the security requirements and provide an adaptive contextual privacy. From a security perspective, it achieves confidentiality, integrity, anonymity, context-aware privacy, public verifiability, and ciphertext authenticity. Moreover, the key escrow and public key certificate problems are solved through this mechanism. Performance analysis demonstrates the efficiency and the effectiveness of the proposed scheme compared to benchmark schemes in terms of functional security, storage, communication and computational cost.

2018-02-02
Villarreal-Vasquez, M., Bhargava, B., Angin, P..  2017.  Adaptable Safety and Security in V2X Systems. 2017 IEEE International Congress on Internet of Things (ICIOT). :17–24.

With the advances in the areas of mobile computing and wireless communications, V2X systems have become a promising technology enabling deployment of applications providing road safety, traffic efficiency and infotainment. Due to their increasing popularity, V2X networks have become a major target for attackers, making them vulnerable to security threats and network conditions, and thus affecting the safety of passengers, vehicles and roads. Existing research in V2X does not effectively address the safety, security and performance limitation threats to connected vehicles, as a result of considering these aspects separately instead of jointly. In this work, we focus on the analysis of the tradeoffs between safety, security and performance of V2X systems and propose a dynamic adaptability approach considering all three aspects jointly based on application needs and context to achieve maximum safety on the roads using an Internet of vehicles. Experiments with a simple V2V highway scenario demonstrate that an adaptive safety/security approach is essential and V2X systems have great potential for providing low reaction times.

2017-12-20
Hao, K., Achanta, S. V., Fowler, J., Keckalo, D..  2017.  Apply a wireless line sensor system to enhance distribution protection schemes. 2017 70th Annual Conference for Protective Relay Engineers (CPRE). :1–11.

Traditionally, utility crews have used faulted circuit indicators (FCIs) to locate faulted line sections. FCIs monitor current and provide a local visual indication of recent fault activity. When a fault occurs, the FCIs operate, triggering a visual indication that is either a mechanical target (flag) or LED. There are also enhanced FCIs with communications capability, providing fault status to the outage management system (OMS) or supervisory control and data acquisition (SCADA) system. Such quickly communicated information results in faster service restoration and reduced outage times. For distribution system protection, protection devices (such as recloser controls) must coordinate with downstream devices (such as fuses or other recloser controls) to clear faults. Furthermore, if there are laterals on a feeder that are protected by a recloser control, it is desirable to communicate to the recloser control which lateral had the fault in order to enhance tripping schemes. Because line sensors are typically placed along distribution feeders, they are capable of sensing fault status and characteristics closer to the fault. If such information can be communicated quickly to upstream protection devices, at protection speeds, the protection devices can use this information to securely speed up distribution protection scheme operation. With recent advances in low-power electronics, wireless communications, and small-footprint sensor transducers, wireless line sensors can now provide fault information to the protection devices with low latencies that support protection speeds. This paper describes the components of a wireless protection sensor (WPS) system, its integration with protection devices, and how the fault information can be transmitted to such devices. Additionally, this paper discusses how the protection devices use this received fault information to securely speed up the operation speed of and improve the selectivity of distribution protection schemes, in add- tion to locating faulted line sections.

2017-02-27
Lever, K. E., Kifayat, K., Merabti, M..  2015.  Identifying interdependencies using attack graph generation methods. 2015 11th International Conference on Innovations in Information Technology (IIT). :80–85.

Information and communication technologies have augmented interoperability and rapidly advanced varying industries, with vast complex interconnected networks being formed in areas such as safety-critical systems, which can be further categorised as critical infrastructures. What also must be considered is the paradigm of the Internet of Things which is rapidly gaining prevalence within the field of wireless communications, being incorporated into areas such as e-health and automation for industrial manufacturing. As critical infrastructures and the Internet of Things begin to integrate into much wider networks, their reliance upon communication assets by third parties to ensure collaboration and control of their systems will significantly increase, along with system complexity and the requirement for improved security metrics. We present a critical analysis of the risk assessment methods developed for generating attack graphs. The failings of these existing schemas include the inability to accurately identify the relationships and interdependencies between the risks and the reduction of attack graph size and generation complexity. Many existing methods also fail due to the heavy reliance upon the input, identification of vulnerabilities, and analysis of results by human intervention. Conveying our work, we outline our approach to modelling interdependencies within large heterogeneous collaborative infrastructures, proposing a distributed schema which utilises network modelling and attack graph generation methods, to provide a means for vulnerabilities, exploits and conditions to be represented within a unified model.

2017-02-13
M. M. Olama, M. M. Matalgah, M. Bobrek.  2015.  "An integrated signaling-encryption mechanism to reduce error propagation in wireless communications: performance analyses". 2015 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR). :1-6.

Traditional encryption techniques require packet overhead, produce processing time delay, and suffer from severe quality of service deterioration due to fades and interference in wireless channels. These issues reduce the effective transmission data rate (throughput) considerably in wireless communications, where data rate with limited bandwidth is the main constraint. In this paper, performance evaluation analyses are conducted for an integrated signaling-encryption mechanism that is secure and enables improved throughput and probability of bit-error in wireless channels. This mechanism eliminates the drawbacks stated herein by encrypting only a small portion of an entire transmitted frame, while the rest is not subject to traditional encryption but goes through a signaling process (designed transformation) with the plaintext of the portion selected for encryption. We also propose to incorporate error correction coding solely on the small encrypted portion of the data to drastically improve the overall bit-error rate performance while not noticeably increasing the required bit-rate. We focus on validating the signaling-encryption mechanism utilizing Hamming and convolutional error correction coding by conducting an end-to-end system-level simulation-based study. The average probability of bit-error and throughput of the encryption mechanism are evaluated over standard Gaussian and Rayleigh fading-type channels and compared to the ones of the conventional advanced encryption standard (AES).

2015-05-04
Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.

2015-05-01
Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.

2015-04-30
Severi, S., Sottile, F., Abreu, G., Pastrone, C., Spirito, M., Berens, F..  2014.  M2M technologies: Enablers for a pervasive Internet of Things. Networks and Communications (EuCNC), 2014 European Conference on. :1-5.

We survey the state-of-the-art on the Internet-of-Things (IoT) from a wireless communications point of view, as a result of the European FP7 project BUTLER which has its focus on pervasiveness, context-awareness and security for IoT. In particular, we describe the efforts to develop so-called (wireless) enabling technologies, aimed at circumventing the many challenges involved in extending the current set of domains (“verticals”) of IoT applications towards a “horizontal” (i.e. integrated) vision of the IoT. We start by illustrating current research effort in machine-to-machine (M2M), which is mainly focused on vertical domains, and we discuss some of them in details, depicting then the necessary horizontal vision for the future intelligent daily routine (“Smart Life”). We then describe the technical features of the most relevant heterogeneous communications technologies on which the IoT relies, under the light of the on-going M2M service layer standardization. Finally we identify and present the key aspects, within three major cross-vertical categories, under which M2M technologies can function as enablers for the horizontal vision of the IoT.