Visible to the public Biblio

Filters: Keyword is RFID  [Clear All Filters]
2023-03-17
Gabsi, Souhir, Kortli, Yassin, Beroulle, Vincent, Kieffer, Yann, Belgacem, Hamdi.  2022.  Adoption of a Secure ECC-based RFID Authentication Protocol. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :69–74.
A single RFID (Radio Frequency Identification) is a technology for the remote identification of objects or people. It integrates a reader that receives the information contained in an RFID tag through an RFID authentication protocol. RFID provides several security services to protect the data transmitted between the tag and the reader. However, these advantages do not prevent an attacker to access this communication and remaining various security and privacy issues in these systems. Furthermore, with the rapid growth of IoT, there is an urgent need of security authentication and confidential data protection. Authentication protocols based on elliptic curve cryptographic (ECC) were widely investigated and implemented to guarantee protection against the various attacks that can suffer an RFID system. In this paper, we are going to focus on a comparative study between the most efficient ECC-based RFID authentication protocols that are already published, and study their security against the different wireless attacks.
Al-Aziz, Faiq Najib, Mayasari, Ratna, Sartika, Nike, Irawan, Arif Indra.  2022.  Strategy to Increase RFID Security System Using Encryption Algorithm. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
The Internet of Things (IoT) is rapidly evolving, allowing physical items to share information and coordinate with other nodes, increasing IoT’s value and being widely applied to various applications. Radio Frequency Identification (RFID) is usually used in IoT applications to automate item identification by establishing symmetrical communication between the tag device and the reader. Because RFID reading data is typically in plain text, a security mechanism is required to ensure that the reading results from this RFID data remain confidential. Researchers propose a lightweight encryption algorithm framework for IoT-based RFID applications to address this security issue. Furthermore, this research assesses the implementation of lightweight encryption algorithms, such as Grain v1 and Espresso, as two systems scenarios. The Grain v1 encryption is the final eSTREAM project that accepts an 80-bit key, 64-bit IV, and has a 160-bit internal state with limited application. In contrast, the Espresso algorithm has been implemented in various applications such as 5G wireless communication. Furthermore, this paper tested the performance of each encryption algorithm in the microcontroller and inspected the network performance in an IoT system.
Simatupang, Joni Welman, Tambunan, Ramses Wanto.  2022.  Security Door Lock Using Multi-Sensor System Based on RFID, Fingerprint, and Keypad. 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). :453–457.
Thefts problem in household needs to be anticipated with home security system. One of simple methods is using automatic solenoid door lock system, so that it is difficult to be duplicated and will reduce the chance of theft action when the house is empty. Therefore, a home security system prototype that can be accessed by utilizing biometric fingerprint, Radio Frequency Identification (RFID), and keypad sensors was designed and tested. Arduino Uno works to turn on the door lock solenoid, so door access will be given when authentication is successful. Experimental results show that fingerprint sensor works well by being able to read fingerprints perfectly and the average time required to scan a fingerprint was 3.7 seconds. Meanwhile, Radio Frequency Identification (RFID) sensor detects Electronic-Kartu Tanda Penduduk (E-KTP) and the average time required for Radio Frequency Identification (RFID) to scan the card is about 2.4 seconds. Keypad functions to store password to unlock the door which produces the average time of 3.7 seconds after 10 trials. Average time to open with multi-sensor is 9.8 seconds. However, its drawback is no notification or SMS which directly be accessed by a cellphone or website with Wi-Fi or Telegram applications allow homeowners to monitor their doors from afar as to minimize the number of house thefts.
Dash, Lipsa, Sharma, Sanjeev, M, Manish, M, Chaitanya, P, Vamsi Krishna, Manna, Souvik.  2022.  Comparative Analysis of Secured Transport Systems using RFID Technology for Schools. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–6.
Despite the strict measures taken by authorities for children safety, crime against children is increasing. To curb this crime, it is important to improve the safety of children. School authorities can be severely penalized for these incidents, hence monitoring the school bus is significantly important in limiting these incidents. The developing worry of families for the security and insurance of their kids has started incredible interest in creating strong frameworks that give successful following and oversight of kids driving among home and school. Coordinated transport following permits youngsters to partake more in their normal schoolwork longer than trusting that a transport will be late with the assistance of notice and guarantees the security of every understudy. These days, reacting to the necessities existing apart from everything else, numerous instructive foundations have begun to push more towards a compelling global positioning framework of their vehicles that ensures the wellbeing of their understudies. Effective transport following is accomplished by procuring the geographic directions utilizing the GPS module and communicating the informationto a distant server. The framework depends on prepared to-utilize inactive RFID peruses. Make a message pop-up from the server script subsequent to checking the understudy's RFID tag be. The RFID examine exhibiting that the understudy boarded the vehicle to the specific trained professionals and the parent. Successful transport following permits school specialists, guardians, and drivers to precisely design their schedules while protecting kids from the second they get on until they get off the transport. The framework overall makes it conceivable to educate the administration regarding crises or protests. A variety of reports can be generated for different school-wide real-time bus and vehicle activities. This paper reviews the various smart security transport systems proposed for providing security features.
Cherneva, Vanya, Trahan, Jerry L..  2022.  2P-mtOTP: A Secure, Two-Party, Ownership Transfer Protocol for Multiple RFID Tags based on Quadratic Residues. 2022 IEEE International Conference on RFID (RFID). :29–34.
Radio Frequency Identification (RFID) improves the efficiency of managing assets in supply chain applications throughout an entire life cycle or while in transport. Transfer of ownership of RFID-tagged items involves replacing information authorizing the old owner with information authorizing the new owner. In this work, we present a two-party, multiple tag, single-owner protocol for ownership transfer: 2P-mtOTP. This two-party protocol depends only on the communication among the two owners and the tags. Further, 2P-mtOTP is robust to attacks on its security, and it preserves the privacy of the owners and tags. We analyze our work in comparison to recent ownership transfer protocols in terms of security, privacy, and efficiency.
ISSN: 2573-7635
2023-03-03
Mishra, Ruby, Okade, Manish, Mahapatra, Kamalakanta.  2022.  FPGA based High Throughput Substitution Box Architectures for Lightweight Block Ciphers. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–7.
This paper explores high throughput architectures for the substitution modules, which are an integral component of encryption algorithms. The security algorithms chosen belong to the category of lightweight crypto-primitives suitable for pervasive computing. The focus of this work is on the implementation of encryption algorithms on hardware platforms to improve speed and facilitate optimization in the area and power consumption of the design. In this work, the architecture for the encryption algorithms' substitution box (S-box) is modified using switching circuits (i.e., MUX-based) along with a logic generator and included in the overall cipher design. The modified architectures exhibit high throughput and consume less energy in comparison to the state-of-the-art designs. The percentage increase in throughput or maximum frequency differs according to the chosen algorithms discussed elaborately in this paper. The evaluation of various metrics specific to the design are executed at RFID-specific frequency so that they can be deployed in an IoT environment. The designs are mainly simulated and compared on Nexys4 DDR FPGA platform, along with a few other FPGAs, to meet similar design and implementation environments for a fair comparison. The application of the proposed S-box modification is explored for the healthcare scenario with promising results.
2022-02-04
Sultan, Aiman, Hassan, Mehmood, Mansoor, Khwaja, Ahmed, Syed Saddam.  2021.  Securing IoT Enabled RFID Based Object Tracking Systems: A Symmetric Cryptography Based Authentication Protocol for Efficient Smart Object Tracking. 2021 International Conference on Communication Technologies (ComTech). :7—12.
Supply chain management systems (SCM) are the most intensive and statistical RFID application for object tracking. A lot of research has been carried out to overcome security issues in the field of online/offline object tracking as well as authentication protocols involving RFID technology. Due to advancements with the Internet of Things (IoT) and embedded systems in object tracking schemes the latest research manages to deliver information about the object’s location as well as provide particulars about the state of an object. Recent research presented a proposal for an authentication and online object tracking protocol focusing on solutions for privacy issues for device identification, end-to-end authentication, and secure online object tracking. However, recent schemes have been found to be vulnerable to traceability attacks. This paper presents an enhanced end-to-end authentication scheme where the identity of the user is kept anonymous so that its actions can not be tracked, eliminating attacks related to traceability. The security of the proposed protocol is formally analyzed using the attack model of the automated security testing tool, ProVerif. The proposed scheme outperforms competing schemes based on security.
Ou, Qinghai, Song, Jigao, Wang, Xuanzhong.  2021.  Automatic Security Monitoring Method of Power Communication Network Based on Edge Computing. 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :74—79.
The power communication network generates a large amount of data. The existing security monitoring method needs to use a large transmission bandwidth in the process of data processing, which leads to the decrease of real-time response. Therefore, an automatic monitoring method of power communication network security based on edge computing is proposed. The paper establishes the power communication monitoring network architecture by combining RFID identification sensor network and wireless communication network. The edge calculation is embedded to the edge side of the power communication network, and the data processing model of power communication is established. Based on linear discriminant analysis, the paper designs a network security situation awareness assessment model, and uses this model to evaluate the real-time data collected by the power communication network. According to the evaluation results, the probability of success of intrusion attack is calculated and the security risk monitoring is carried out for the intrusion attack. The experimental results show that compared with the existing monitoring methods, the edge based security monitoring method can effectively reduce communication delay, improve the real-time response, and then improve the intelligent level of power communication network.
Xie, Xin, Liu, Xiulong, Guo, Song, Qi, Heng, Li, Keqiu.  2021.  A Lightweight Integrity Authentication Approach for RFID-enabled Supply Chains. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1—10.
Major manufacturers and retailers are increasingly using RFID systems in supply-chain scenarios, where theft of goods during transport typically causes significant economic losses for the consumer. Recent sample-based authentication methods attempt to use a small set of random sample tags to authenticate the integrity of the entire tag population, which significantly reduces the authentication time at the expense of slightly reduced reliability. The problem is that it still incurs extensive initialization overhead when writing the authentication information to all of the tags. This paper presents KTAuth, a lightweight integrity authentication approach to efficiently and reliably detect missing tags and counterfeit tags caused by stolen attacks. The competitive advantage of KTAuth is that it only requires writing the authentication information to a small set of deterministic key tags, offering a significant reduction in initialization costs. In addition, KTAuth strictly follows the C1G2 specifications and thus can be deployed on Commercial-Off-The-Shelf RFID systems. Furthermore, KTAuth proposes a novel authentication chain mechanism to verify the integrity of tags exclusively based on data stored on them. To evaluate the feasibility and deployability of KTAuth, we implemented a small-scale prototype system using mainstream RFID devices. Using the parameters achieved from the real experiments, we also conducted extensive simulations to evaluate the performance of KTAuth in large-scale RFID systems.
Badkul, Anjali, Mishra, Agya.  2021.  Design of High-frequency RFID based Real-Time Bus Tracking System. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI). :243—247.
This paper describes a design of IoT enabled real-time bus tracking system. In this work a bus tracking mobile phone app is developed, using that people can exactly locate the bus status and time to bus arrival at bus-stop. This work uses high-frequency RFID tags at buses and RFID receivers at busstops and with NodeMCU real-time RIFD tagging (bus running) information is collected and uploaded on the cloud. Users can access the bus running and status from the cloud on the mobile app in real-time.
Alma'aitah, Abdallah Y., Massad, Mohammad A..  2021.  Digital Baseband Modulation Termination in RFID Tags for a Streamlined Collision Resolution. 2020 International Conference on Communications, Signal Processing, and their Applications (ICCSPA). :1—6.
Radio Frequency Identification (RFID) technology has attracted much attention due to its variety of applications, e.g., inventory control and object tracking. Tag identification protocols are essential in such applications. However, in such protocols, significant time and power are consumed on inevitable simultaneous tag replies (collisions) because tags can't sense the media to organize their replies to the reader. In this paper, novel reader-tag interaction method is proposed in which low-complexity Digital Baseband Modulation Termination (DBMT) circuit is added to RFID tags to enhance collision resolution efficiency in conjunction with Streamlined Collision Resolution (SCR) scheme. The reader, in the proposed SCR, cuts off or reduces the power of its continuous wave signal for specific periods if corrupted data is detected. On the other hand, DBMT circuit at the tag measures the time of the reader signal cutoff, which in turn, allows the tag to interpret different cutoff periods into commands. SCR scheme is applied to ALOHA- and Tree-based protocols with varying numbers of tags to evaluate the performance under low and high collision probabilities. SCR provides a significant enhancement to both types of protocols with robust synchronization within collision slots. This novel reader-tag interaction method provides a new venue for revisiting tag identification and counting protocols.
Kewale, Prasad, Gardalwar, Ashwin, Vegad, Prachit, Agrawal, Rahul, Jaju, Santosh, Dabhekar, Kuldeep.  2021.  Design and Implementation of RFID Based E-Document Verification System. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :165—170.
The work shows the RFID cards as e-document rather than a paper passport with embedded chip as the e-passport. This type of Technological advancement creates benefits like the information can be stored electronically. The aim behind this is to reduce or stop the uses of illegal document. This will assure the security and prevent illegal entry in particular country by fake documents it will also maintain the privacy of the owner. Here, this research work has proposed an e-file verification device by means of RFID. Henceforth, this research work attempts to develop a new generation for file verification by decreasing the human effort. The most important idea of this examine is to make it feasible to get admission to the info of proprietor of the file the usage of RFID generation. For this the man or woman is issued RFID card. This card incorporates circuit which is used to store procedure information via way of modulating and demodulating the radio frequency sign transmitted. Therefore, the facts saved in this card are referred to the file element of the man or woman. With the help of the hardware of the proposed research work RFID Based E-Document verification provides a tag to the holder which produces waves of electromagnetic signal and then access the data. The purpose is to make the verification of document easy, secured and with less human intervention. In the proposed work, the comparative analysis is done using RFID technology in which 100 documents are verified in 500 seconds as compared to manual work done in 3000 seconds proves the system to be 6 times more efficient as compared to conventional method.
Sun, Wei.  2021.  Taguard: Exposing the Location of Active Eavesdropper in Passive RFID System. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :360—363.

This paper exploits the possibility of exposing the location of active eavesdropper in commodity passive RFID system. Such active eavesdropper can activate the commodity passive RFID tags to achieve data eavesdropping and jamming. In this paper, we show that these active eavesdroppers can be significantly detrimental to the commodity passive RFID system on RFID data security and system feasibility. We believe that the best way to defeat the active eavesdropper in the commodity passive RFID system is to expose the location of the active eavesdropper and kick it out. To do so, we need to localize the active eavesdropper. However, we cannot extract the channel from the active eavesdropper, since we do not know what the active eavesdropper's transmission and the interference from the tag's backscattered signals. So, we propose an approach to mitigate the tag's interference and cancel out the active eavesdropper's transmission to obtain the subtraction-and-division features, which will be used as the input of the machine learning model to predict the location of active eavesdropper. Our preliminary results show the average accuracy of 96% for predicting the active eavesdropper's position in four grids of the surveillance plane.

Salman, Amy Hamidah, Adiono, Trio, Abdurrahman, Imran, Aditya, Yudi, Chandra, Zefanya.  2021.  Aircraft Passenger Baggage Handling System with RFID Technology. 2021 International Symposium on Electronics and Smart Devices (ISESD). :1—5.
The mishandled passenger baggage in aviation industry is still a big problem. This research is focused on designing a baggage handling system (BHS) at the airport for identifying and tracking of passenger baggage based on RFID technology. The proposed BHS system consists of hardware device to identify the baggage and the cloud-based tracking application. The BHS device is designed based on UHF passive RFID technology and IoT technology. The device can be used as handheld device in check-in counter and arrival area. The device can also be used as a fixed device in screening, sortation, and transition belt conveyer. The BHS device consists of RFID reader module, a microcontroller, LCD, keypad, a WiFi module and a storage device. The user and airport staff can track the luggage position and its status through dashboard application.
Basic, Fikret, Gaertner, Martin, Steger, Christian.  2021.  Towards Trustworthy NFC-based Sensor Readout for Battery Packs in Battery Management Systems. 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA). :285—288.
In the last several years, wireless Battery Management Systems (BMS) have slowly become a topic of interest from both academia and industry. It came from a necessity derived from the increased production and use in different systems, including electric vehicles. Wireless communication allows for a more flexible and cost-efficient sensor installation in battery packs. However, many wireless technologies, such as those that use the 2.4 GHz frequency band, suffer from interference limitations that need to be addressed. In this paper, we present an alternative approach to communication in BMS that relies on the use of Near Field Communication (NFC) technology for battery sensor readouts. Due to a vital concern over the counterfeited battery pack products, security measures are also considered. To this end, we propose the use of an effective and easy to integrate authentication schema that is supported by dedicated NFC devices. To test the usability of our design, a demonstrator using the targeted devices was implemented and evaluated.
Govindan, Thennarasi, Palaniswamy, Sandeep Kumar, Kanagasabai, Malathi, Kumar, Sachin, Rao, T. Rama, Kannappan, Lekha.  2021.  RFID-Band Integrated UWB MIMO Antenna for Wearable Applications. 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA). :199—202.
This manuscript prescribes the design of a four-port ultra-wideband (UWB) diversity antenna combined with 2.4 GHz ISM radio band. The denim-based wearable antenna is intended for use as a radio frequency identification (RFID) tag for tracking and security applications. The unit cells of the antenna are arranged orthogonally to each other to achieve isolation \$\textbackslashtextbackslashgt15\$ dB. The bending analysis of the proposed antenna is performed to ensure its stability. The dimensions of the unit cell and four-port MIMO antenna are \$30 \textbackslashtextbackslashtimes 17 \textbackslashtextbackslashtimes 1\$ cubic millimeter and \$55 \textbackslashtextbackslashtimes 53 \textbackslashtextbackslashtimes 1\$ cubic millimeter, respectively. The proposed antenna’s specific absorption rate (SAR) is researched in order to determine the safer SAR limit set by the Federal Communications Commission (FCC).
2021-09-30
Mezzah, Ibrahim, Kermia, Omar, Chemali, Hamimi.  2020.  Extensive Fault Emulation on RFID Tags. 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS). :1–2.
Radio frequency identification (RFID) is widespread and still necessary in many important applications. However, and in various significant cases, the use of this technology faces multiple security issues that must be addressed. This is mainly related to the use of RFID tags (transponders) which are electronic components communicating wirelessly, and hence they are vulnerable to multiple attacks through several means. In this work, an extensive fault analysis is performed on a tag architecture in order to evaluate its hardness. Tens of millions of single-bit upset (SBU) and multiple-bit upset (MBU) faults are emulated randomly on this tag architecture using an FPGA-based emulation platform. The emulated faults are classified under five groups according to faults effect on the tag behaviour. The obtained results show the faults effect variation in function of the number of MBU affected bits. The interpretation of this variation allows evaluating the tag robustness. The proposed approach represents an efficient mean that permits to study tag architectures at the design level and evaluating their robustness and vulnerability to fault attacks.
Liu, Jianwei, Zou, Xiang, Han, Jinsong, Lin, Feng, Ren, Kui.  2020.  BioDraw: Reliable Multi-Factor User Authentication with One Single Finger Swipe. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Multi-factor user authentication (MFUA) becomes increasingly popular due to its superior security comparing with single-factor user authentication. However, existing MFUAs require multiple interactions between users and different authentication components when sensing the multiple factors, leading to extra overhead and bad use experiences. In this paper, we propose a secure and user-friendly MFUA system, namely BioDraw, which utilizes four categories of biometrics (impedance, geometry, composition, and behavior) of human hand plus the pattern-based password to identify and authenticate users. A user only needs to draw a pattern on a RFID tag array, while four biometrics can be simultaneously collected. Particularly, we design a gradient-based pattern recognition algorithm for pattern recognition and then a CNN-LSTM-based classifier for user recognition. Furthermore, to guarantee the systemic security, we propose a novel anti-spoofing scheme, called Binary ALOHA, which utilizes the inhabit randomness of RFID systems. We perform extensive experiments over 21 volunteers. The experiment result demonstrates that BioDraw can achieve a high authentication accuracy (with a false reject rate less than 2%) and is effective in defending against various attacks.
2021-09-16
Zhao, Bing-Qing, Wang, Hui-Ming, Jiang, Jia-Cheng.  2020.  Safeguarding Backscatter RFID Communication against Proactive Eavesdropping. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Passive radio frequency identification (RFID) systems raise new transmission secrecy protection challenges against the special proactive eavesdropper, since it is able to both enhance the information wiretap and interfere with the information detection at the RFID reader simultaneously by broadcasting its own continuous wave (CW) signal. To defend against proactive eavesdropping attacks, we propose an artificial noise (AN) aided secure transmission scheme for the RFID reader, which superimposes an AN signal on the CW signal to confuse the proactive eavesdropper. The power allocation between the AN signal and the CW signal are optimized to maximize the secrecy rate. Furthermore, we model the attack and defense process between the proactive eavesdropper and the RFID reader as a hierarchical security game, and prove it can achieve the equilibrium. Simulation results show the superiority of our proposed scheme in terms of the secrecy rate and the interactions between the RFID reader and the proactive eavesdropper.
Prodanoff, Zornitza Genova, Penkunas, Andrew, Kreidl, Patrick.  2020.  Anomaly Detection in RFID Networks Using Bayesian Blocks and DBSCAN. 2020 SoutheastCon. :1–7.
The use of modeling techniques such as Knuth's Rule or Bayesian Blocks for the purposes of real-time traffic characterization in RFID networks has been proposed already. This study examines the applicability of using Voronoi polygon maps or alternatively, DBSCAN clustering, as initial density estimation techniques when computing 2-Dimentional Bayesian Blocks models of RFID traffic. Our results are useful for the purposes of extending the constant-piecewise adaptation of Bayesian Blocks into 2D piecewise models for the purposes of more precise detection of anomalies in RFID traffic based on multiple log features such as command type, location, UID values, security support, etc. Automatic anomaly detection of RFID networks is an essential first step in the implementation of intrusion detection as well as a timely response to equipment malfunction such as tag hardware failure.
Ayoub, Ahmed A., Aagaard, Mark D..  2020.  Application-Specific Instruction Set Architecture for an Ultralight Hardware Security Module. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :69–79.
Due to the rapid growth of using Internet of Things (IoT) devices in the daily life, the need to achieve an acceptable level of security and privacy according to the real security risks for these devices is rising. Security risks may include privacy threats like gaining sensitive information from a device, and authentication problems from counterfeit or cloned devices. It becomes more challenging to add strong security features to extremely constrained devices compared to battery operated devices that have more computational and storage capabilities. We propose a novel application specific instruction-set architecture that allows flexibility on many design levels and achieves the required security level for the Electronic Product Code (EPC) passive Radio Frequency Identification (RFID) tag device. Our solution moves a major design effort from hardware to software, which largely reduces the final unit cost. The proposed architecture can be implemented with 4,662 gate equivalent units (GEs) for 65 nm CMOS technology excluding the memory and the cryptographic units. The synthesis results fulfill the requirements of extremely constrained devices and allow the inclusion of cryptographic units into the datapath of the proposed application-specific instruction set processor (ASIP).
Cui, Ying, Yao, Yifan, Xu, GuanNan.  2020.  Research of Ubiquitous Power Internet of Things Security Authentication Method Based on CPK and RIFD. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1519–1523.
As RFID system has fewer calculation and storage resources for RF tag, it is difficult to adopt the traditional encryption algorithm technology with higher security, which leads to the system being vulnerable to counterfeiting, tampering, leakage and other problems. To this end, a lightweight bidirectional security authentication method based on the combined public key is proposed. The method deals with the key management problem of the power Internet of things (IoT) in the terminal layer device by studying the combined public key (CPK) technology. The elliptic curve cryptosystem in the CPK has the advantages of short key length, fast calculation speed and small occupied bandwidth, which is very suitable for the hardware environment of RFID system with limited performance. It also ensures the security of the keys used in the access of the IoT terminal equipment to the authentication, and achieves overall optimization of speed, energy consumption, processing capacity and security.
Rachini, Ali S., Khatoun, R..  2020.  Distributed Key Management Authentication Algorithm in Internet of Things (IOT). 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ). :1–5.
Radio frequency identification system (RFID) is a wireless technology based on radio waves. These radio waves transmit data from the tag to a reader, which then transmits the information to a server. RFID tags have several advantages, they can be used in merchandise, to track vehicles, and even patients. Connecting RFID tags to internet terminal or server it called Internet of Things (IoT). Many people have shown interest in connected objects or the Internet of Things (IoT). The IoT is composed of many complementary elements each having their own specificities. The RFID is often seen as a prerequisite for the IoT. The main challenge of RFID is the security issues. Connecting RFID with IoT poses security threats and challenges which are needed to be discussed properly before deployment. In this paper, we proposed a new distributed encryption algorithm to be used in the IoT structure in order to reduce the security risks that are confronted in RFID technology.
He, Hongqi, Lin, Hui, Wang, Ruimin, Wang, Huanwei.  2020.  Research on RFID Technology Security. 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :423–427.
In recent years, the Internet of Things technology has developed rapidly. RFID technology, as an important branch of the Internet of Things technology, is widely used in logistics, medical, military and other fields. RFID technology not only brings convenience to people's production and life, but also hides many security problems. However, the current research on RFID technology mainly focuses on the technology application, and there are relatively few researches on its security analysis. This paper firstly studies the authentication mechanism and storage mechanism of RFID technology, then analyzes the common vulnerabilities of RFID, and finally gives the security protection suggestions.
Asci, Cihan, Wang, Wei, Sonkusale, Sameer.  2020.  Security Monitoring System Using Magnetically-Activated RFID Tags. 2020 IEEE SENSORS. :1–4.
Existing methods for home security monitoring depend on expensive custom battery-powered solutions. In this article, we present a battery-free solution that leverages any off-the-shelf passive radio frequency identification (RFID) tag for real-time entry detection. Sensor consists of a printed RFID antenna on paper, coupled to a magnetic reed switch and is affixed on the door. Opening of the door triggers the reed switch causing RFID signal transmission detected by any off-the-shelf passive RFID reader. This paper shows simulation and experimental results for such magnetically-actuated RFID (or magRFID) opening sensor.