Visible to the public Biblio

Filters: Keyword is integrated circuit design  [Clear All Filters]
2018-05-09
Zhao, Zhiqiang, Feng, Z..  2017.  A Spectral Graph Sparsification Approach to Scalable Vectorless Power Grid Integrity Verification. 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). :1–6.

Vectorless integrity verification is becoming increasingly critical to robust design of nanoscale power delivery networks (PDNs). To dramatically improve efficiency and capability of vectorless integrity verifications, this paper introduces a scalable multilevel integrity verification framework by leveraging a hierarchy of almost linear-sized spectral power grid sparsifiers that can well retain effective resistances between nodes, as well as a recent graph-theoretic algebraic multigrid (AMG) algorithmic framework. As a result, vectorless integrity verification solution obtained on coarse level problems can effectively help find the solution of the original problem. Extensive experimental results show that the proposed vectorless verification framework can always efficiently and accurately obtain worst-case scenarios in even very large power grid designs.

Lokananta, F., Hartono, D., Tang, C. M..  2017.  A Scalable and Reconfigurable Verification and Benchmark Environment for Network on Chip Architecture. 2017 4th International Conference on New Media Studies (CONMEDIA). :6–10.

To reduce the complex communication problem that arise as the number of on-chip component increases, the use of Network-on-Chip (NoC) as interconnection architectures have become more promising to solve complex on-chip communication problems. However, providing a suitable test base to measure and verify functionality of any NoC is a compulsory. Universal Verification Methodology (UVM) is introduced as a standardized and reusable methodology for verifying integrated circuit design. In this research, a scalable and reconfigurable verification and benchmark environment for NoC is proposed.

2018-04-11
Alsaiari, U., Gebali, F., Abd-El-Barr, M..  2017.  Programmable Assertion Checkers for Hardware Trojan Detection. 2017 1st Conference on PhD Research in Microelectronics and Electronics Latin America (PRIME-LA). :1–4.

Due to the increase in design complexity and cost of VLSI chips, a number of design houses outsource manufacturing and import designs in a way to reduce the cost. This results in a decrease of the authenticity and security of the manufactured product. Since product development involves outside sources, circuit designers can not guarantee that their hardware has not been altered. It is often possible that attackers include additional hardware in order to gain privileges over the original circuit or cause damage to the product. These added circuits are called ``Hardware Trojans''. In this paper, we investigate introducing necessary modules needed for detection of hardware Trojans. We also introduce necessary programmable logic fabric that can be used in the implementation of the hardware assertion checkers. Our target is to utilize the provided programable fabric in a System on Chip (SoC) and optimize the hardware assertion to cover the detection of most hardware trojans in each core of the target SoC.

Hasegawa, K., Yanagisawa, M., Togawa, N..  2017.  Trojan-Feature Extraction at Gate-Level Netlists and Its Application to Hardware-Trojan Detection Using Random Forest Classifier. 2017 IEEE International Symposium on Circuits and Systems (ISCAS). :1–4.

Recently, due to the increase of outsourcing in IC design, it has been reported that malicious third-party vendors often insert hardware Trojans into their ICs. How to detect them is a strong concern in IC design process. The features of hardware-Trojan infected nets (or Trojan nets) in ICs often differ from those of normal nets. To classify all the nets in netlists designed by third-party vendors into Trojan ones and normal ones, we have to extract effective Trojan features from Trojan nets. In this paper, we first propose 51 Trojan features which describe Trojan nets from netlists. Based on the importance values obtained from the random forest classifier, we extract the best set of 11 Trojan features out of the 51 features which can effectively detect Trojan nets, maximizing the F-measures. By using the 11 Trojan features extracted, the machine-learning based hardware Trojan classifier has achieved at most 100% true positive rate as well as 100% true negative rate in several TrustHUB benchmarks and obtained the average F-measure of 74.6%, which realizes the best values among existing machine-learning-based hardware-Trojan detection methods.

Hossain, F. S., Yoneda, T., Shintani, M., Inoue, M., Orailoglo, A..  2017.  Intra-Die-Variation-Aware Side Channel Analysis for Hardware Trojan Detection. 2017 IEEE 26th Asian Test Symposium (ATS). :52–57.

High detection sensitivity in the presence of process variation is a key challenge for hardware Trojan detection through side channel analysis. In this work, we present an efficient Trojan detection approach in the presence of elevated process variations. The detection sensitivity is sharpened by 1) comparing power levels from neighboring regions within the same chip so that the two measured values exhibit a common trend in terms of process variation, and 2) generating test patterns that toggle each cell multiple times to increase Trojan activation probability. Detection sensitivity is analyzed and its effectiveness demonstrated by means of RPD (relative power difference). We evaluate our approach on ISCAS'89 and ITC'99 benchmarks and the AES-128 circuit for both combinational and sequential type Trojans. High detection sensitivity is demonstrated by analysis on RPD under a variety of process variation levels and experiments for Trojan inserted circuits.

Shen, G., Tang, Y., Li, S., Chen, J., Yang, B..  2017.  A General Framework of Hardware Trojan Detection: Two-Level Temperature Difference Based Thermal Map Analysis. 2017 11th IEEE International Conference on Anti-Counterfeiting, Security, and Identification (ASID). :172–178.

With the globalization of integrated circuit design and manufacturing, Hardware Trojan have posed serious threats to the security of commercial chips. In this paper, we propose the framework of two-level temperature difference based thermal map analysis detection method. In our proposed method, thermal maps of an operating chip during a period are captured, and they are differentiated with the thermal maps of a golden model. Then every pixel's differential temperature of differential thermal maps is extracted and compared with other pixel's. To mitigate the Gaussian white noise and to differentiate the information of Hardware Trojan from the information of normal circuits, Kalman filter algorithm is involved. In our experiment, FPGAs configured with equivalent circuits are utilized to simulate the real chips to validate our proposed approach. The experimental result reveals that our proposed framework can detect Hardware Trojan whose power proportion magnitude is 10''3.

2018-01-23
Zhang, Dongrong, He, Miao, Wang, Xiaoxiao, Tehranipoor, M..  2017.  Dynamically obfuscated scan for protecting IPs against scan-based attacks throughout supply chain. 2017 IEEE 35th VLSI Test Symposium (VTS). :1–6.

Scan-based test is commonly used to increase testability and fault coverage, however, it is also known to be a liability for chip security. Research has shown that intellectual property (IP) or secret keys can be leaked through scan-based attacks. In this paper, we propose a dynamically-obfuscated scan design for protecting IPs against scan-based attacks. By perturbing all test patterns/responses and protecting the obfuscation key, the proposed architecture is proven to be robust against existing non-invasive scan attacks, and can protect all scan data from attackers in foundry, assembly, and system developers (i.e., OEMs) without compromising the testability. Furthermore, the proposed architecture can be easily plugged into EDA generated scan chains without having a noticeable impact on conventional integrated circuit (IC) design, manufacturing, and test flow. Finally, detailed security and experimental analyses have been performed on several benchmarks. The results demonstrate that the proposed method can protect chips from existing brute force, differential, and other scan-based attacks that target the obfuscation key. The proposed design is of low overhead on area, power consumption, and pattern generation time, and there is no impact on test time.

2017-04-20
Takalo, H., Ahmadi, A., Mirhassani, M., Ahmadi, M..  2016.  Analog cellular neural network for application in physical unclonable functions. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2635–2638.
In this paper an analog cellular neural network is proposed with application in physical unclonable function design. Dynamical behavior of the circuit and its high sensitivity to the process variation can be exploited in a challenge-response security system. The proposed circuit can be used as unclonable core module in the secure systems for applications such as device identification/authentication and secret key generation. The proposed circuit is designed and simulated in 45-nm bulk CMOS technology. Monte Carlo simulation for this circuit, results in unpolarized Gaussian-shaped distribution for Hamming Distance between 4005 100-bit PUF instances.
2017-03-08
Liu, B., Jin, Y., Qu, G..  2015.  Hardware Design and Verification Techniques for Supply Chain Risk Mitigation. 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics). :238–239.

We present a brief survey on the state-of-the-art design and verification techniques: IC obfuscation, watermarking, fingerprinting, metering, concurrent checking and verification, for mitigating supply chain security risks such as IC misusing, counterfeiting and overbuilding.

2015-05-06
Subramanyan, P., Tsiskaridze, N., Wenchao Li, Gascon, A., Wei Yang Tan, Tiwari, A., Shankar, N., Seshia, S.A., Malik, S..  2014.  Reverse Engineering Digital Circuits Using Structural and Functional Analyses. Emerging Topics in Computing, IEEE Transactions on. 2:63-80.

Integrated circuits (ICs) are now designed and fabricated in a globalized multivendor environment making them vulnerable to malicious design changes, the insertion of hardware Trojans/malware, and intellectual property (IP) theft. Algorithmic reverse engineering of digital circuits can mitigate these concerns by enabling analysts to detect malicious hardware, verify the integrity of ICs, and detect IP violations. In this paper, we present a set of algorithms for the reverse engineering of digital circuits starting from an unstructured netlist and resulting in a high-level netlist with components such as register files, counters, adders, and subtractors. Our techniques require no manual intervention and experiments show that they determine the functionality of >45% and up to 93% of the gates in each of the test circuits that we examine. We also demonstrate that our algorithms are scalable to real designs by experimenting with a very large, highly-optimized system-on-chip (SOC) design with over 375000 combinational elements. Our inference algorithms cover 68% of the gates in this SOC. We also demonstrate that our algorithms are effective in aiding a human analyst to detect hardware Trojans in an unstructured netlist.
 

Rathmair, M., Schupfer, F., Krieg, C..  2014.  Applied formal methods for hardware Trojan detection. Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. :169-172.

This paper addresses the potential danger using integrated circuits which contain malicious hardware modifications hidden in the silicon structure. A so called hardware Trojan may be added at several stages of the chip development process. This work concentrates on formal hardware Trojan detection during the design phase and highlights applied verification techniques. Selected methods are discussed and their combination used to increase an introduced “Trojan Assurance Level”.
 

Chongxi Bao, Forte, D., Srivastava, A..  2014.  On application of one-class SVM to reverse engineering-based hardware Trojan detection. Quality Electronic Design (ISQED), 2014 15th International Symposium on. :47-54.

Due to design and fabrication outsourcing to foundries, the problem of malicious modifications to integrated circuits known as hardware Trojans has attracted attention in academia as well as industry. To reduce the risks associated with Trojans, researchers have proposed different approaches to detect them. Among these approaches, test-time detection approaches have drawn the greatest attention and most approaches assume the existence of a “golden model”. Prior works suggest using reverse-engineering to identify such Trojan-free ICs for the golden model but they did not state how to do this efficiently. In this paper, we propose an innovative and robust reverseengineering approach to identify the Trojan-free ICs. We adapt a well-studied machine learning method, one-class support vector machine, to solve our problem. Simulation results using state-of-the-art tools on several publicly available circuits show that our approach can detect hardware Trojans with high accuracy rate across different modeling and algorithm parameters.

2015-04-30
Cioranesco, J.-M., Danger, J.-L., Graba, T., Guilley, S., Mathieu, Y., Naccache, D., Xuan Thuy Ngo.  2014.  Cryptographically secure shields. Hardware-Oriented Security and Trust (HOST), 2014 IEEE International Symposium on. :25-31.

Probing attacks are serious threats on integrated circuits. Security products often include a protective layer called shield that acts like a digital fence. In this article, we demonstrate a new shield structure that is cryptographically secure. This shield is based on the newly proposed SIMON lightweight block cipher and independent mesh lines to ensure the security against probing attacks of the hardware located behind the shield. Such structure can be proven secure against state-of-the-art invasive attacks. For the first time in the open literature, we describe a chip designed with a digital shield, and give an extensive report of its cost, in terms of power, metal layer(s) to sacrifice and of logic (including the logic to connect it to the CPU). Also, we explain how “Through Silicon Vias” (TSV) technology can be used for the protection against both frontside and backside probing.