Visible to the public Biblio

Found 109 results

Filters: Keyword is Policy Based Governance  [Clear All Filters]
2023-08-25
Chen, Qingqing, Zhou, Mi, Cai, Ziwen, Su, Sheng.  2022.  Compliance Checking Based Detection of Insider Threat in Industrial Control System of Power Utilities. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1142—1147.
Compare to outside threats, insider threats that originate within targeted systems are more destructive and invisible. More importantly, it is more difficult to detect and mitigate these insider threats, which poses significant cyber security challenges to an industry control system (ICS) tightly coupled with today’s information technology infrastructure. Currently, power utilities rely mainly on the authentication mechanism to prevent insider threats. If an internal intruder breaks the protection barrier, it is hard to identify and intervene in time to prevent harmful damage. Based on the existing in-depth security defense system, this paper proposes an insider threat protection scheme for ICSs of power utilities. This protection scheme can conduct compliance check by taking advantage of the characteristics of its business process compliance and the nesting of upstream and downstream business processes. Taking the Advanced Metering Infrastructures (AMIs) in power utilities as an example, the potential insider threats of violation and misoperation under the current management mechanism are identified after the analysis of remote charge control operation. According to the business process, a scheme of compliance check for remote charge control command is presented. Finally, the analysis results of a specific example demonstrate that the proposed scheme can effectively prevent the consumers’ power outage due to insider threats.
Zheng, Chaofan, Hu, Wenhui, Li, Tianci, Liu, Xueyang, Zhang, Jinchan, Wang, Litian.  2022.  An Insider Threat Detection Method Based on Heterogeneous Graph Embedding. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :11—16.
Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
Akshara Vemuri, Sai, Krishna Chaitanya, Gogineni.  2022.  Insider Attack Detection and Prevention using Server Authentication using Elgamal Encryption. 2022 International Conference on Inventive Computation Technologies (ICICT). :967—972.
Web services are growing demand with fundamental advancements and have given more space to researchers for improving security of all real world applications. Accessing and get authenticated in many applications on web services, user discloses their password and other privacy data to the server for authentication purposes. These shared information should be maintained by the server with high security, otherwise it can be used for illegal purposes for any authentication breach. Protecting the applications from various attacks is more important. Comparing the security threats, insider attacks are most challenging to identify due to the fact that they use the authentication of legitimate users and their privileges to access the application and may cause serious threat to the application. Insider attacks has been studied in previous researchers with different security measures, however there is no much strong work proposed. Various security protocols were proposed for defending insider attackers. The proposed work focused on insider attack protection through Elgamal cryptography technique. The proposed work is much effective on insider attacks and also defends against various attacks. The proposed protocol is better than existing works. The key computation cost and communication cost is relatively low in this proposed work. The proposed work authenticates the application by parallel process of two way authentication mechanism through Elgamal algorithm.
Nagabhushana Babu, B, Gunasekaran, M.  2022.  An Analysis of Insider Attack Detection Using Machine Learning Algorithms. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1—7.
Among the greatest obstacles in cybersecurity is insider threat, which is a well-known massive issue. This anomaly shows that the vulnerability calls for specialized detection techniques, and resources that can help with the accurate and quick detection of an insider who is harmful. Numerous studies on identifying insider threats and related topics were also conducted to tackle this problem are proposed. Various researches sought to improve the conceptual perception of insider risks. Furthermore, there are numerous drawbacks, including a dearth of actual cases, unfairness in drawing decisions, a lack of self-optimization in learning, which would be a huge concern and is still vague, and the absence of an investigation that focuses on the conceptual, technological, and numerical facets concerning insider threats and identifying insider threats from a wide range of perspectives. The intention of the paper is to afford a thorough exploration of the categories, levels, and methodologies of modern insiders based on machine learning techniques. Further, the approach and evaluation metrics for predictive models based on machine learning are discussed. The paper concludes by outlining the difficulties encountered and offering some suggestions for efficient threat identification using machine learning.
Padmavathi, G., Shanmugapriya, D., Asha, S..  2022.  A Framework to Detect the Malicious Insider Threat in Cloud Environment using Supervised Learning Methods. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :354—358.
A malicious insider threat is more vulnerable to an organization. It is necessary to detect the malicious insider because of its huge impact to an organization. The occurrence of a malicious insider threat is less but quite destructive. So, the major focus of this paper is to detect the malicious insider threat in an organization. The traditional insider threat detection algorithm is not suitable for real time insider threat detection. A supervised learning-based anomaly detection technique is used to classify, predict and detect the malicious and non-malicious activity based on highest level of anomaly score. In this paper, a framework is proposed to detect the malicious insider threat using supervised learning-based anomaly detection. It is used to detect the malicious insider threat activity using One-Class Support Vector Machine (OCSVM). The experimental results shows that the proposed framework using OCSVM performs well and detects the malicious insider who obtain huge anomaly score than a normal user.
Yoon, Wonseok, Chang, Hangbae.  2022.  Insider Threat Data Expansion Research using Hyperledger Fabric. 2022 International Conference on Platform Technology and Service (PlatCon). :25—28.
This paper deals with how to implement a system that extends insider threat behavior data using private blockchain technology to overcome the limitations of insider threat datasets. Currently, insider threat data is completely undetectable in existing datasets for new methods of insider threat due to the lack of insider threat scenarios and abstracted event behavior. Also, depending on the size of the company, it was difficult to secure a sample of data with the limit of a small number of leaks among many general users in other organizations. In this study, we consider insiders who pose a threat to all businesses as public enemies. In addition, we proposed a system that can use a private blockchain to expand insider threat behavior data between network participants in real-time to ensure reliability and transparency.
Chaipa, Sarathiel, Ngassam, Ernest Ketcha, Shawren, Singh.  2022.  Towards a New Taxonomy of Insider Threats. 2022 IST-Africa Conference (IST-Africa). :1—10.
This paper discusses the outcome of combining insider threat agent taxonomies with the aim of enhancing insider threat detection. The objectives sought to explore taxonomy combinations and investigate threat sophistication from the taxonomy combinations. Investigations revealed the plausibility of combining the various taxonomy categories to derive a new taxonomy. An observation on category combinations yielded the introduction of the concept of a threat path. The proposed taxonomy tree consisted of more than a million threat-paths obtained using a formula from combinatorics analysis. The taxonomy category combinations thus increase the insider threat landscape and hence the gap between insider threat agent sophistication and countermeasures. On the defensive side, knowledge of insider threat agent taxonomy category combinations has the potential to enhance defensive countermeasure tactics, techniques and procedures, thus increasing the chances of insider threat detection.
Kim, Jawon, Chang, Hangbae.  2022.  An Exploratory Study of Security Data Analysis Method for Insider Threat Prevention. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :611—613.
Insider threats are steadily increasing, and the damage is also enormous. To prevent insider threats, security solutions, such as DLP, SIEM, etc., are being steadily developed. However, they have limitations due to the high rate of false positives. In this paper, we propose a data analysis method and methodology for responding to a technology leak incident. The future study may be performed based on the proposed methodology.
2023-02-24
Nie, Leyao, He, Lin, Song, Guanglei, Gao, Hao, Li, Chenglong, Wang, Zhiliang, Yang, Jiahai.  2022.  Towards a Behavioral and Privacy Analysis of ECS for IPv6 DNS Resolvers. 2022 18th International Conference on Network and Service Management (CNSM). :303—309.
The Domain Name System (DNS) is critical to Internet communications. EDNS Client Subnet (ECS), a DNS extension, allows recursive resolvers to include client subnet information in DNS queries to improve CDN end-user mapping, extending the visibility of client information to a broader range. Major content delivery network (CDN) vendors, content providers (CP), and public DNS service providers (PDNS) are accelerating their IPv6 infrastructure development. With the increasing deployment of IPv6-enabled services and DNS being the most foundational system of the Internet, it becomes important to analyze the behavioral and privacy status of IPv6 resolvers. However, there is a lack of research on ECS for IPv6 DNS resolvers.In this paper, we study the ECS deployment and compliance status of IPv6 resolvers. Our measurement shows that 11.12% IPv6 open resolvers implement ECS. We discuss abnormal noncompliant scenarios that exist in both IPv6 and IPv4 that raise privacy and performance issues. Additionally, we measured if the sacrifice of clients’ privacy can enhance IPv6 CDN performance. We find that in some cases ECS helps end-user mapping but with an unnecessary privacy loss. And even worse, the exposure of client address information can sometimes backfire, which deserves attention from both Internet users and PDNSes.
Goto, Ren, Matama, Kazushige, Nishiwaki, Chihiro, Naito, Katsuhiro.  2022.  Proposal of an extended CYPHONIC adapter supporting general nodes using virtual IPv6 addresses. 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE). :257—261.
The spread of the Internet of Things (IoT) and cloud services leads to a request for secure communication between devices, known as zero-trust security. The authors have been developing CYber PHysical Overlay Network over Internet Communication (CYPHONIC) to realize secure end-to-end communication among devices. A device requires installing the client program into the devices to realize secure communication over our overlay network. However, some devices refuse additional installation of external programs due to the limitation of system and hardware resources or the effect on system reliability. We proposed new technology, a CYPHONIC adapter, to support these devices. Currently, the CYPHONIC adapter supports only IPv4 virtual addresses and needs to be compatible with general devices that use IPv6. This paper proposes the dual-stack CYPHONIC adapter supporting IPv4/IPv6 virtual addresses for general devices. The prototype implementation shows that the general device can communicate over our overlay network using both IP versions through the proposed CYPHONIC adapter.
Ali, Maytham Hakim, Al-Alak, Saif.  2022.  Node Protection using Hiding Identity for IPv6 Based Network. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST). :111—117.
Protecting an identity of IPv6 packet against Denial-of-Service (DoS) attack, depend on the proposed methods of cryptography and steganography. Reliable communication using the security aspect is the most visible issue, particularly in IPv6 network applications. Problems such as DoS attacks, IP spoofing and other kinds of passive attacks are common. This paper suggests an approach based on generating a randomly unique identities for every node. The generated identity is encrypted and hided in the transmitted packets of the sender side. In the receiver side, the received packet verified to identify the source before processed. Also, the paper involves implementing nine experiments that are used to test the proposed scheme. The scheme is based on creating the address of IPv6, then passing it to the logistics map then encrypted by RSA and authenticated by SHA2. In addition, network performance is computed by OPNET modular. The results showed better computation power consumption in case of lost packet, average events, memory and time, and the better results as total memory is 35,523 KB, average events/sec is 250,52, traffic sent is 30,324 packets/sec, traffic received is 27,227 packets/sec, and lose packets is 3,097 packets/sec.
Sha, Feng, Wei, Ying.  2022.  The Design of Campus Security Early Warning System based on IPv6 Wireless Sensing. 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI). :103—106.
Based on the campus wireless IPv6 network system, using WiFi contactless sensing and positioning technology and action recognition technology, this paper designs a new campus security early warning system. The characteristic is that there is no need to add new monitoring equipment. As long as it is the location covered by the wireless IPv6 network, personnel quantity statistics and personnel body action status display can be realized. It plays an effective monitoring supplement to the places that cannot be covered by video surveillance in the past, and can effectively prevent campus violence or other emergencies.
Lu, Ke, Yan, Wenjuan, Wang, Shuyi.  2022.  Testing and Analysis of IPv6-Based Internet of Things Products for Mission-Critical Network Applications. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :66—71.
This paper uses the test tool provided by the Internet Protocol Version 6 (IPv6) Forum to test the protocol conformance of IPv6 devices. The installation and testing process of IPv6 Ready Logo protocol conformance test suite developed by TAHI PROJECT team is described in detail. This section describes the test content and evaluation criteria of the suite, analyzes the problems encountered during the installation and use of the suite, describes the method of analyzing the test results of the suite, and describes the test content added to the latest version of the test suite. The test suite can realize automatic testing, the test cases accurately reflect the requirements of the IPv6 protocol specification, can be used to judge whether IPv6-based Internet of Things(IoT) devices meets the relevant protocol standards.
Zhang, Guangya, Xu, Xiang.  2022.  Design and Practice of Campus Network Based on IPv6 Convergence Access in Guangdong Ocean University. 2022 International Conference on Computation, Big-Data and Engineering (ICCBE). :1—4.
For the smart campus of Guangdong Ocean University, we analyze the current situation of the university's network construction, as well as the problems in infrastructure, equipment, operation management, and network security. We focus on the construction objectives and design scheme of the smart campus, including the design of network structure and basic network services. The followings are considered in this study: optimization of network structure simplification, business integration, multi-operator access environment, operation and maintenance guarantee system, organic integration of production, and teaching and research after network leveling transformation.
Kadusic, Esad, Zivic, Natasa, Hadzajlic, Narcisa, Ruland, Christoph.  2022.  The transitional phase of Boost.Asio and POCO C++ networking libraries towards IPv6 and IoT networking security. 2022 IEEE International Conference on Smart Internet of Things (SmartIoT). :80—85.
With the global transition to the IPv6 (Internet Protocol version 6), IP (Internet Protocol) validation efficiency and IPv6 support from the aspect of network programming are gaining more importance. As global computer networks grow in the era of IoT (Internet of Things), IP address validation is an inevitable process for assuring strong network privacy and security. The complexity of IP validation has been increased due to the rather drastic change in the memory architecture needed for storing IPv6 addresses. Low-level programming languages like C/C++ are a great choice for handling memory spaces and working with simple devices connected in an IoT (Internet of Things) network. This paper analyzes some user-defined and open-source implementations of IP validation codes in Boost. Asio and POCO C++ networking libraries, as well as the IP security support provided for general networking purposes and IoT. Considering a couple of sample codes, the paper gives a conclusion on whether these C++ implementations answer the needs for flexibility and security of the upcoming era of IPv6 addressed computers.
Li, Yubing, Yang, Wei, Zhou, Zhou, Liu, Qingyun, Li, Zhao, Li, Shu.  2022.  P4-NSAF: defending IPv6 networks against ICMPv6 DoS and DDoS attacks with P4. ICC 2022 - IEEE International Conference on Communications. :5005—5010.
Internet Protocol Version 6 (IPv6) is expected for widespread deployment worldwide. Such rapid development of IPv6 may lead to safety problems. The main threats in IPv6 networks are denial of service (DoS) attacks and distributed DoS (DDoS) attacks. In addition to the similar threats in Internet Protocol Version 4 (IPv4), IPv6 has introduced new potential vulnerabilities, which are DoS and DDoS attacks based on Internet Control Message Protocol version 6 (ICMPv6). We divide such new attacks into two categories: pure flooding attacks and source address spoofing attacks. We propose P4-NSAF, a scheme to defend against the above two IPv6 DoS and DDoS attacks in the programmable data plane. P4-NSAF uses Count-Min Sketch to defend against flooding attacks and records information about IPv6 agents into match tables to prevent source address spoofing attacks. We implement a prototype of P4-NSAF with P4 and evaluate it in the programmable data plane. The result suggests that P4-NSAF can effectively protect IPv6 networks from DoS and DDoS attacks based on ICMPv6.
2023-01-20
Boiarkin, Veniamin, Rajarajan, Muttukrishnan.  2022.  A novel Blockchain-Based Data-Aggregation scheme for Edge-Enabled Microgrid of Prosumers. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :63—68.

The concept of a microgrid has emerged as a promising solution for the management of local groups of electricity consumers and producers. The use of end-users' energy usage data can help in increasing efficient operation of a microgrid. However, existing data-aggregation schemes for a microgrid suffer different cyber attacks and do not provide high level of accuracy. This work aims at designing a privacy-preserving data-aggregation scheme for a microgrid of prosumers that achieves high level of accuracy, thereby benefiting to the management and control of a microgrid. First, a novel smart meter readings data protection mechanism is proposed to ensure privacy of prosumers by hiding the real energy usage data from other parties. Secondly, a blockchain-based data-aggregation scheme is proposed to ensure privacy of the end-users, while achieving high level of accuracy in terms of the aggregated data. The proposed data-aggregation scheme is evaluated using real smart meter readings data from 100 prosumers. The results show that the proposed scheme ensures prosumers' privacy and achieves high level of accuracy, while it is secure against eavesdropping and man-in-the-middle cyber attacks.

Nightingale, James S., Wang, Yingjie, Zobiri, Fairouz, Mustafa, Mustafa A..  2022.  Effect of Clustering in Federated Learning on Non-IID Electricity Consumption Prediction. 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.

When applied to short-term energy consumption forecasting, the federated learning framework allows for the creation of a predictive model without sharing raw data. There is a limit to the accuracy achieved by standard federated learning due to the heterogeneity of the individual clients' data, especially in the case of electricity data, where prediction of peak demand is a challenge. A set of clustering techniques has been explored in the literature to improve prediction quality while maintaining user privacy. These studies have mainly been conducted using sets of clients with similar attributes that may not reflect real-world consumer diversity. This paper explores, implements and compares these clustering techniques for privacy-preserving load forecasting on a representative electricity consumption dataset. The experimental results demonstrate the effects of electricity consumption heterogeneity on federated forecasting and a non-representative sample's impact on load forecasting.

Boni, Mounika, Ch, Tharakeswari, Alamanda, Swathi, Arasada, Bhaskara Venkata Sai Gayath, Maria, Azees.  2022.  An Efficient and Secure Anonymous Authentication Scheme for V2G Networks. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :432—436.

The vehicle-to-grid (V2G) network has a clear advantage in terms of economic benefits, and it has grabbed the interest of powergrid and electric vehicle (EV) consumers. Many V2G techniques, at present, for example, use bilinear pairing to execute the authentication scheme, which results in significant computational costs. Furthermore, in the existing V2G techniques, the system master key is issued independently by the third parties, it is vulnerable to leaking if the third party is compromised by an attacker. This paper presents an efficient and secure anonymous authentication scheme for V2G networks to overcome this issue we use a lightweight authentication system for electric vehicles and smart grids. In the proposed technique, the keys are generated by the trusted authority after the successful registration of EVs in the trusted authority and the dispatching center. The suggested scheme not only enhances the verification performance of V2G networks and also protects against inbuilt hackers.

Paudel, Amrit, Sampath, Mohasha, Yang, Jiawei, Gooi, Hoay Beng.  2022.  Peer-to-Peer Energy Trading in Smart Grid Considering Power Losses and Network Fees. 2022 IEEE Power & Energy Society General Meeting (PESGM). :1—1.

Peer-to-peer (P2P) energy trading is one of the promising approaches for implementing decentralized electricity market paradigms. In the P2P trading, each actor negotiates directly with a set of trading partners. Since the physical network or grid is used for energy transfer, power losses are inevitable, and grid-related costs always occur during the P2P trading. A proper market clearing mechanism is required for the P2P energy trading between different producers and consumers. This paper proposes a decentralized market clearing mechanism for the P2P energy trading considering the privacy of the agents, power losses as well as the utilization fees for using the third party owned network. Grid-related costs in the P2P energy trading are considered by calculating the network utilization fees using an electrical distance approach. The simulation results are presented to verify the effectiveness of the proposed decentralized approach for market clearing in P2P energy trading.

Ghosh, Soumyadyuti, Chatterjee, Urbi, Dey, Soumyajit, Mukhopadhyay, Debdeep.  2022.  Is the Whole lesser than its Parts? Breaking an Aggregation based Privacy aware Metering Algorithm 2022 25th Euromicro Conference on Digital System Design (DSD). :921—929.

Smart metering is a mechanism through which fine-grained electricity usage data of consumers is collected periodically in a smart grid. However, a growing concern in this regard is that the leakage of consumers' consumption data may reveal their daily life patterns as the state-of-the-art metering strategies lack adequate security and privacy measures. Many proposed solutions have demonstrated how the aggregated metering information can be transformed to obscure individual consumption patterns without affecting the intended semantics of smart grid operations. In this paper, we expose a complete break of such an existing privacy preserving metering scheme [10] by determining individual consumption patterns efficiently, thus compromising its privacy guarantees. The underlying methodol-ogy of this scheme allows us to - i) retrieve the lower bounds of the privacy parameters and ii) establish a relationship between the privacy preserved output readings and the initial input readings. Subsequently, we present a rigorous experimental validation of our proposed attacking methodology using real-life dataset to highlight its efficacy. In summary, the present paper queries: Is the Whole lesser than its Parts? for such privacy aware metering algorithms which attempt to reduce the information leakage of aggregated consumption patterns of the individuals.

Silva, Cátia, Faria, Pedro, Vale, Zita.  2022.  Using Supervised Learning to Assign New Consumers to Demand Response Programs According to the Context. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—6.

Active consumers have now been empowered thanks to the smart grid concept. To avoid fossil fuels, the demand side must provide flexibility through Demand Response events. However, selecting the proper participants for an event can be complex due to response uncertainty. The authors design a Contextual Consumer Rate to identify the trustworthy participants according to previous performances. In the present case study, the authors address the problem of new players with no information. In this way, two different methods were compared to predict their rate. Besides, the authors also refer to the consumer privacy testing of the dataset with and without information that could lead to the participant identification. The results found to prove that, for the proposed methodology, private information does not have a high impact to attribute a rate.

Zobiri, Fairouz, Gama, Mariana, Nikova, Svetla, Deconinck, Geert.  2022.  A Privacy-Preserving Three-Step Demand Response Market Using Multi-Party Computation. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.

Demand response has emerged as one of the most promising methods for the deployment of sustainable energy systems. Attempts to democratize demand response and establish programs for residential consumers have run into scalability issues and risks of leaking sensitive consumer data. In this work, we propose a privacy-friendly, incentive-based demand response market, where consumers offer their flexibility to utilities in exchange for a financial compensation. Consumers submit encrypted offer which are aggregated using Computation Over Encrypted Data to ensure consumer privacy and the scalability of the approach. The optimal allocation of flexibility is then determined via double-auctions, along with the optimal consumption schedule for the users with respect to the day-ahead electricity prices, thus also shielding participants from high electricity prices. A case study is presented to show the effectiveness of the proposed approach.

Himdi, Tarik, Ishaque, Mohammed, Ikram, Muhammed Jawad.  2022.  Cyber Security Challenges in Distributed Energy Resources for Smart Cities. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :788—792.

With the proliferation of data in Internet-related applications, incidences of cyber security have increased manyfold. Energy management, which is one of the smart city layers, has also been experiencing cyberattacks. Furthermore, the Distributed Energy Resources (DER), which depend on different controllers to provide energy to the main physical smart grid of a smart city, is prone to cyberattacks. The increased cyber-attacks on DER systems are mainly because of its dependency on digital communication and controls as there is an increase in the number of devices owned and controlled by consumers and third parties. This paper analyzes the major cyber security and privacy challenges that might inflict, damage or compromise the DER and related controllers in smart cities. These challenges highlight that the security and privacy on the Internet of Things (IoT), big data, artificial intelligence, and smart grid, which are the building blocks of a smart city, must be addressed in the DER sector. It is observed that the security and privacy challenges in smart cities can be solved through the distributed framework, by identifying and classifying stakeholders, using appropriate model, and by incorporating fault-tolerance techniques.

Lazaroiu, George Cristian, Kayisli, Korhan, Roscia, Mariacristina, Steriu, Ilinca Andreaa.  2022.  Smart Contracts for Households Managed by Smart Meter Equipped with Blockchain and Chain 2. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). :340—345.

Managing electricity effectively also means knowing as accurately as possible when, where and how electricity is used. Detailed metering and timely allocation of consumption can help identify specific areas where energy consumption is excessive and therefore requires action and optimization. All those interested in the measurement process (distributors, sellers, wholesalers, managers, ultimately customers and new prosumer figures - producers / consumers -) have an interest in monitoring and managing energy flows more efficiently, in real time.Smart meter plays a key role in sending data containing consumer measurements to both the producer and the consumer, thanks to chain 2. It allows you to connect consumption and production, during use and the customer’s identity, allowing billing as Time-of-Use or Real-Time Pricing, and through the new two-way channel, this information is also made available to the consumer / prosumer himself, enabling new services such as awareness of energy consumption at the very moment of energy use.This is made possible by latest generation devices that "talk" with the end user, which use chain 2 and the power line for communication.However, the implementation of smart meters and related digital technologies associated with the smart grid raises various concerns, including, privacy. This paper provides a comparative perspective on privacy policies for residential energy customers, moreover, it will be possible to improve security through the blockchain for the introduction of smart contracts.