Biblio
This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.
In this paper, we outline a novel, forward error correction-based information hiding technique for adaptive rate wireless communication systems. Specifically, we propose leveraging the functionality of wireless local area network modulation and coding schemes (MCS) and link adaptation mechanisms to significantly increase covert channel throughput. After describing our generalized information hiding model, we detail implementation of this technique within the IEEE 802.11ad, directional multi-Gigabit standard. Simulation results demonstrate the potential of the proposed techniques to develop reliable, high-throughput covert channels under multiple MCS rates and embedding techniques. Covert channel performance is evaluated in terms of the observed packet error ratio of the underlying communication system as well as the bit error ratio of the hidden data.
Quick UDP Internet Connections (QUIC) is an experimental transport protocol designed to primarily reduce connection establishment and transport latency, as well as to improve security standards with default end-to-end encryption in HTTPbased applications. QUIC is a multiplexed and secure transport protocol fostered by Google and its design emerged from the urgent need of innovation in the transport layer, mainly due to difficulties extending TCP and deploying new protocols. While still under standardisation, a non-negligble fraction of the Internet's traffic, more than 7% of a European Tier1-ISP, is already running over QUIC and it constitutes more than 30% of Google's egress traffic [1].
Cyber-physical systems (CPS) are state-of-the-art communication environments that offer various applications with distinct requirements. However, security in CPS is a nonnegotiable concept, since without a proper security mechanism the applications of CPS may risk human lives, the privacy of individuals, and system operations. In this paper, we focus on PHY-layer security approaches in CPS to prevent passive eavesdropping attacks, and we propose an integration of physical layer operations to enhance security. Thanks to the McEliece cryptosystem, error injection is firstly applied to information bits, which are encoded with the forward error correction (FEC) schemes. Golay and Hamming codes are selected as FEC schemes to satisfy power and computational efficiency. Then obtained codewords are transmitted across reliable intermediate relays to the legitimate receiver. As a performance metric, the decoding frame error rate of the eavesdropper is analytically obtained for the fragmentary existence of significant noise between relays and Eve. The simulation results validate the analytical calculations, and the obtained results show that the number of low-quality channels and the selected FEC scheme affects the performance of the proposed model.
The internet of things (IoT) is the popular wireless network for data collection applications. The IoT networks are deployed in dense or sparse architectures, out of which the dense networks are vastly popular as these are capable of gathering the huge volumes of data. The collected data is analyzed using the historical or continuous analytical systems, which uses the back testing or time-series analytics to observe the desired patterns from the target data. The lost or bad interval data always carries the high probability to misguide the analysis reports. The data is lost due to a variety of reasons, out of which the most popular ones are associated with the node failures and connectivity holes, which occurs due to physical damage, software malfunctioning, blackhole/wormhole attacks, route poisoning, etc. In this paper, the work is carried on the new routing scheme for the IoTs to avoid the connectivity holes, which analyzes the activity of wireless nodes and takes the appropriate actions when required.