Biblio
Aiming at the problems of poor stability and low accuracy of current communication data informatization processing methods, this paper proposes a research on nonlinear frequency hopping communication data informatization under the framework of big data security evaluation. By adding a frequency hopping mediation module to the frequency hopping communication safety evaluation framework, the communication interference information is discretely processed, and the data parameters of the nonlinear frequency hopping communication data are corrected and converted by combining a fast clustering analysis algorithm, so that the informatization processing of the nonlinear frequency hopping communication data under the big data safety evaluation framework is completed. Finally, experiments prove that the research on data informatization of nonlinear frequency hopping communication under the framework of big data security evaluation could effectively improve the accuracy and stability.
With the rapid development of radio detection and wireless communication, narrowband radio-frequency interference (NB-RFI) is a serious threat for GNSS-R (global navigation satellite systems - reflectometry) receivers. However, interferometric GNSS-R (iGNSS-R) is more prone to the NB-RFIs than conventional GNSS-R (cGNSS-R), due to wider bandwidth and unclean replica. Therefore, there is strong demand of detecting and mitigating NB-RFIs for GNSS-R receivers, especially iGNSS-R receivers. Hence, focusing on working with high sampling rate and simplifying the fixed-point implementation on FPGA, this paper proposes a system design exploiting cascading IIR band-stop filters (BSFs) to suppress NB-RFIs. Furthermore, IIR BSF compared with IIR notch filter (NF) and IIR band-pass filter (BPF) is the merely choice that is able to mitigate both white narrowband interference (WNBI) and continuous wave interference (CWI) well. Finally, validation and evaluation are conducted, and then it is indicated that the system design can detect NB-RFIs and suppress WNBI and CWI effectively, which improves the signal-to-noise ratio (SNR) of the Delay-Doppler map (DDM).
With the rapid proliferation of mobile users, the spectrum scarcity has become one of the issues that have to be addressed. Cognitive Radio technology addresses this problem by allowing an opportunistic use of the spectrum bands. In cognitive radio networks, unlicensed users can use licensed channels without causing harmful interference to licensed users. However, cognitive radio networks can be subject to different security threats which can cause severe performance degradation. One of the main attacks on these networks is the primary user emulation in which a malicious node emulates the characteristics of the primary user signals. In this paper, we propose a detection technique of this attack based on the RSS-based localization with the maximum likelihood estimation. The simulation results show that the proposed technique outperforms the RSS-based localization method in detecting the primary user emulation attacker.
Multipath propagation of radio waves negatively affects to the performance of telecommunications and radio navigation systems. When performing time and frequency synchronization tasks of spatially separated standards, the multipath signal propagation aggravates the probability of a correct synchronization and introduces an error. The presence of a multipath signal reduces the signal-to-noise ratio in the received signal, which in turn causes an increase in the synchronization error. If the time delay of the additional beam (s) is less than the useful signal duration, the reception of the useful signal is further complicated by the presence of a partially correlated interference, the level and correlation degree of which increases with decreasing time delay of the interference signals. The article considers with the method of multi-path interference compensation in a multi-position (telecommunication or radio navigation system) or a time and frequency synchronization system for the case if at least one of the receiving positions has no noise signal or does not exceed the permissible level. The essence of the method is that the interference-free useful signal is transmitted to other points in order to pick out the interference component from the signal / noise mix. As a result, an interference-free signal is used for further processing. The mathematical models of multipath interference suppressors in the temporal and in the frequency domain are presented in the article. Compared to time processing, processing in the frequency domain reduces computational costs. The operation of the suppressor in the time domain has been verified experimentally.
This paper considers a pilot spoofing attack scenario in a massive MIMO system. A malicious user tries to disturb the channel estimation process by sending interference symbols to the base-station (BS) via the uplink. Another legitimate user counters by sending random symbols. The BS does not possess any partial channel state information (CSI) and distribution of symbols sent by malicious user a priori. For such scenario, this paper aims to separate the channel directions from the legitimate and malicious users to the BS, respectively. A blind channel separation algorithm based on estimating the characteristic function of the distribution of the signal space vector is proposed. Simulation results show that the proposed algorithm provides good channel separation performance in a typical massive MIMO system.
Next generation cellular networks will provide users better experiences by densely deploying smaller cells, which results in more complicated interferences environment. In order to coordinate interference, power control for uplink is particularly challenging due to random locations of uplink transmitter and dense deployment. In this paper, we address the uplink fractional power control (FPC) optimization problem from network optimization perspective. The relations between FPC parameters and network KPIs (Key Performance Indicators) are investigated. Rather than considering any single KPI in conventional approaches, multi-KPI optimization problem is formulated and solved. By relaxing the discrete optimization problem to a continuous one, the gradients of multiple KPIs with respect to FPC parameters are derived. The gradient enables efficiently searching for optimized FPC parameters which is particularly desirable for dense deployment of large number of cells. Simulation results show that the proposed scheme greatly outperforms the traditional one, in terms of network mean load, call drop & block ratio, and convergence speed.
This paper considers the two-user interference relay channel where each source wishes to communicate to its destination a message that is confidential from the other destination. Furthermore, the relay, that is the enabler of communication, due to the absence of direct links, is untrusted. Thus, the messages from both sources need to be kept secret from the relay as well. We provide an achievable secure rate region for this network. The achievability scheme utilizes structured codes for message transmission, cooperative jamming and scaled compute-and-forward. In particular, the sources use nested lattice codes and stochastic encoding, while the destinations jam using lattice points. The relay decodes two integer combinations of the received lattice points and forwards, using Gaussian codewords, to both destinations. The achievability technique provides the insight that we can utilize the untrusted relay node as an encryption block in a two-hop interference relay channel with confidential messages.
Smart grid is a cyber-physical system that integrates power infrastructures with information technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence, spread spectrum systems, which provide jamming resilience via multiple frequency and code channels, must be adapted to the smart grid for secure wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for timely smart grid communication under any potential jamming attack. To address this issue, we provide a paradigm shift from the case-by-case methodology, which is widely used in existing works to investigate well-adopted attack models, to the worst-case methodology, which offers delay performance guarantee for smart grid applications under any attack. We first define a generic jamming process that characterizes a wide range of existing attack models. Then, we show that in all strategies under the generic process, the worst-case message delay is a U-shaped function of network traffic load. This indicates that, interestingly, increasing a fair amount of traffic can in fact improve the worst-case delay performance. As a result, we demonstrate a lightweight yet promising system, transmitting adaptive camouflage traffic (TACT), to combat jamming attacks. TACT minimizes the message delay by generating extra traffic called camouflage to balance the network load at the optimum. Experiments show that TACT can decrease the probability that a message is not delivered on time in order of magnitude.