Biblio
Named Data Networking (NDN) is a new network architecture design that led to the evolution of a network architecture based on data-centric. Questions have been raised about how to compare its performance with the old architecture such as IP network which is generally based on Internet Protocol version 4 (IPv4). Differs with the old one, source and destination addresses in the delivery of data are not required on the NDN network because the addresses function is replaced by a data name (Name) which serves to identify the data uniquely. In a computer network, a network routing is an essential factor to support data communication. The network routing on IP network relies only on Routing Information Base (RIB) derived from the IP table on the router. So that, if there is a problem on the network such as there is one node exposed to a dangerous attack, the IP router should wait until the IP table is updated, and then the routing channel is changed. The issue of how to change the routing path without updating IP table has received considerable critical attention. The NDN network has an advantage such as its capability to execute an adaptive forwarding mechanism, which FIB (Forwarding Information Base) of the NDN router keeps information for routing and forwarding planes. Therefore, if there is a problem on the network, the NDN router can detect the problem more quickly than the IP router. The contribution of this study is important to explain the benefit of the forwarding mechanism of the NDN network compared to the IP network forwarding mechanism when there is a node which is suffered a hijack attack.
As one of the next generation network architectures, Named Data Networking(NDN) which features location-independent addressing and content caching makes it more suitable to be deployed into Vehicular Ad-hoc Network(VANET). However, a new attack pattern is found when NDN and VANET combine. This new attack is Interest Packet Popple Broadcast Diffusion Attack (PBDA). There is no mitigation strategies to mitigate PBDA. In this paper a mitigation strategies called RVMS based on node reputation value (RV) is proposed to detect malicious nodes. The node calculates the neighbor node RV by direct and indirect RV evaluation and uses Markov chain predict the current RV state of the neighbor node according to its historical RV. The RV state is used to decide whether to discard the interest packet. Finally, the effectiveness of the RVMS is verified through modeling and experiment. The experimental results show that the RVMS can mitigate PBDA.
Named Data Networking (NDN) is a future Internet architecture, NDN forwarding strategy is a hot research topic in MANET. At present, there are two categories of forwarding strategies in NDN. One is the blind forwarding(BF), the other is the aware forwarding(AF). Data packet return by the way that one came forwarding strategy(DRF) as one of the BF strategy may fail for the interruptions of the path that are caused by the mobility of nodes. Consumer need to wait until the interest packet times out to request the data packet again. To solve the insufficient of DRF, in this paper a Forwarding Strategy, called FN based on Neighbor-aware is proposed for NDN MANET. The node maintains the neighbor information and the request information of neighbor nodes. In the phase of data packet response, in order to improve request satisfaction rate, node specifies the next hop node; Meanwhile, in order to reduce packet loss rate, node assists the last hop node to forward packet to the specific node. The simulation results show that compared with DRF and greedy forwarding(GF) strategy, FN can improve request satisfaction rate when node density is high.
Existing data management and searching system for Internet of Things uses centralized database. For this reason, security vulnerabilities are found in this system which consists of server such as IP spoofing, single point of failure and Sybil attack. This paper proposes data management system is based on blockchain which ensures security by using ECDSA digital signature and SHA-256 hash function. Location that is indicated as IP address of data owner and data name are transcribed in block which is included in the blockchain. Furthermore, we devise data manegement and searching method through analyzing block hash value. By using security properties of blockchain such as authentication, non-repudiation and data integrity, this system has advantage of security comparing to previous data management and searching system using centralized database or P2P networks.
Due to the proliferation of reprogrammable hardware, core designs built from modules drawn from a variety of sources execute with direct access to critical system resources. Expressing guarantees that such modules satisfy, in particular the dynamic conditions under which they release information about their unbounded streams of inputs, and automatically proving that they satisfy such guarantees, is an open and critical problem.,,To address these challenges, we propose a domain-specific language, named STREAMS, for expressing information-flow policies with declassification over unbounded input streams. We also introduce a novel algorithm, named SIMAREL, that given a core design C and STREAMS policy P, automatically proves or falsifies that C satisfies P. The key technical insight behind the design of SIMAREL is a novel algorithm for efficiently synthesizing relational invariants over pairs of circuit executions.,,We expressed expected behavior of cores designed independently for research and production as STREAMS policies and used SIMAREL to check if each core satisfies its policy. SIMAREL proved that half of the cores satisfied expected behavior, but found unexpected information leaks in six open-source designs: an Ethernet controller, a flash memory controller, an SD-card storage manager, a robotics controller, a digital-signal processing (DSP) module, and a debugging interface.
The Domain Name System (DNS) is part of the core of the Internet. Over the past decade, much-needed security features were added to this protocol, with the introduction of the DNS Security Extensions. DNSSEC adds authenticity and integrity to the protocol using digital signatures, and turns the DNS into a public key infrastructure (PKI). At the top of this PKI is a single key, the so-called Key Signing Key (KSK) for the DNS root. The current Root KSK was introduced in 2010, and has not changed since. This year, the Root KSK will be replaced for the first time ever. This event potentially has a major impact on the Internet. Thousands of DNS resolvers worldwide rely on this key to validate DNSSEC signatures, and must start using the new key, either through an automated process, or manual intervention. Failure to pick up the new key will result in resolvers becoming completely unavailable to end users. This work presents the "Root Canary", a system to monitor and measure this event from the perspective of validating DNS resolvers for its entire nine-month duration. The system combines three active measurement platforms to have the broadest possible coverage of validating resolvers. Results will be presented in near real-time, to allow the global DNS community to act if problems arise. Furthermore, after the Root KSK rollover concludes in March 2018, we will use the recorded datasets for an in-depth analysis, from which the Internet community can draw lessons for future key rollovers.
As a proposed Internet architecture, Named Data Networking must provide effective security support: data authenticity, confidentiality, and availability. This poster focuses on supporting data confidentiality via encryption. The main challenge is to provide an easy-to-use key management mechanism that ensures only authorized parties are given the access to protected data. We describe the design of name-based access control (NAC) which provides automated key management by developing systematic naming conventions for both data and cryptographic keys. We also discuss an enhanced version of NAC that leverages attribute-based encryption mechanisms (NAC-ABE) to improve the flexibility of data access control and reduce communication, storage, and processing overheads.
This is a critical time in the design and deployment of Cyber Physical Systems (CPS). Advances in networking, computing, sensing, and control systems have enabled a broad range of new devices and services. Our transportation and medical systems are at the forefront of this advance and rapidly adding cyber components to these existing physical systems. Industry is driven by functional requirements and fast-moving markets and unfortunately security is typically not a driving factor. This can lead to designs were security is an additional feature that will be "bolted on" later. Now is the time to address security. The system designs are evolving rapidly and in most cases design standards are only now beginning to emerge. Many of the devices being deployed today have lifespans measured in decades. The design choices being made today will directly impact next several decades. This talk presents both the challenges and opportunities in building security into the design of these critical systems and will specifically address two emerging challenges. The first challenge considers how we update these devices. Updates involve technical, business, and policy issues. The consequence of an error could be measured in lives lost. The second challenges considers the basic networking approach. These systems may not require traditional networking solutions or traditional security solutions. Content centric networking is an emerging area that is directly applicable to CPS and IoT devices. Content centric networking makes fundamental changes in the core networking concepts, shifting communication from the traditional source/destination model to a new model where forwarding and routing are based on the content sought. In this new model, packets need not even include a source. This talk will argue this model is ideally suited for CPS and IoT environments. A content centric does not just improve the underlying communications system, it fundamentally changes the security and allows designs to move currently intractable security designs to new designs that are both more efficient and more secure.
An approach to creating secure virtual private networks for the Named Data Networking (NDN) protocol suite is described. It encrypts and encapsulates NDN packets from higher security domains and places them as the payload in unencrypted NDN packets, much as IPsec encapsulates encrypted IP datagrams in unencrypted IP datagrams. We then leverage the well-known properties of the IP-in-IP approach, taken by IPsec in tunnel mode, to understand the strengths and weaknesses of the proposed NDN-in-NDN approach.
Named Data Networking (NDN) is one of the most promising data-centric networks. NDN is resilient to most of the attacks that are possible in TCP/IP stack. Since NDN has different network architecture than TCP/IP, so it is prone to new types of attack. These attacks are Interest Flooding Attack (IFA), Cache Privacy Attack, Cache Pollution Attack, Content Poisoning Attack, etc. In this paper, we discussed the detection of IFA. First, we model the IFA on linear topology using the ndnSIM and CCNx code base. We have selected most promising feature among all considered features then we applied diïňĂerent machine learning techniques to detect the attack. We have shown that result of attack detection in case of simulation and implementation is almost same. We modeled IFA on DFN topology and compared the results of different machine learning approaches.
Top-level domains play an important role in domain name system. Close attention should be paid to security of top level domains. In this paper, we found many configuration anomalies of top-level domains by analyzing their resource records. We got resource records of top-level domains from root name servers and authoritative servers of top-level domains. By comparing these resource records, we observed the anomalies in top-level domains. For example, there are 8 servers shared by more than one hundred top-level domains; Some TTL fields or SERIAL fields of resource records obtained on each NS servers of the same top-level domain were inconsistent; some authoritative servers of top-level domains were unreachable. Those anomalies may affect the availability of top-level domains. We hope that these anomalies can draw top-level domain administrators' attention to security of top-level domains.