Visible to the public Biblio

Filters: Keyword is Named Data Network Security  [Clear All Filters]
2022-10-06
He, Bingjun, Chen, Jianfeng.  2021.  Named Entity Recognition Method in Network Security Domain Based on BERT-BiLSTM-CRF. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :508–512.
With the increase of the number of network threats, the knowledge graph is an effective method to quickly analyze the network threats from the mass of network security texts. Named entity recognition in network security domain is an important task to construct knowledge graph. Aiming at the problem that key Chinese entity information in network security related text is difficult to identify, a named entity recognition model in network security domain based on BERT-BiLSTM-CRF is proposed to identify key named entities in network security related text. This model adopts the BERT pre-training model to obtain the word vectors of the preceding and subsequent text information, and the obtained word vectors will be input to the subsequent BiLSTM module and CRF module for encoding and sorting. The test results show that this model has a good effect on the data set of network security domain. The recognition effect of this model is better than that of LSTM-CRF, BERT-LSTM-CRF, BERT-CRF and other models, and the F1=93.81%.
Ganivev, Abduhalil, Mavlonov, Obid, Turdibekov, Baxtiyor, Uzoqova, Ma'mura.  2021.  Improving Data Hiding Methods in Network Steganography Based on Packet Header Manipulation. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1–5.
In this paper, internet is among the basic necessities of life. Internet has changed each and everybody's lives. So confidentiality of messages is very important over the internet. Steganography is the science of sending secret messages between the sender and intended receiver. It is such a technique that makes the exchange of covert messages possible. Each time a carrier is to be used for achieving steganography. The carrier plays a major role in establishing covert communication channel. This survey paper introduces steganography and its carriers. This paper concentrates on network protocols to be used as a carrier of steganograms. There are a number of protocols available to do so in the networks. Network steganography describes various methods used for transmitting data over a network without it being detected. Most of the methods proposed for hiding data in a network do not offer an additional protection to the covert data as it is sent as plain text. This paper presents a framework that offers the protection to the covert data by encrypting it and compresses it for gain in efficiency.
Zhang, Jiachao, Yu, Peiran, Qi, Le, Liu, Song, Zhang, Haiyu, Zhang, Jianzhong.  2021.  FLDDoS: DDoS Attack Detection Model based on Federated Learning. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :635–642.
Recently, DDoS attack has developed rapidly and become one of the most important threats to the Internet. Traditional machine learning and deep learning methods can-not train a satisfactory model based on the data of a single client. Moreover, in the real scenes, there are a large number of devices used for traffic collection, these devices often do not want to share data between each other depending on the research and analysis value of the attack traffic, which limits the accuracy of the model. Therefore, to solve these problems, we design a DDoS attack detection model based on federated learning named FLDDoS, so that the local model can learn the data of each client without sharing the data. In addition, considering that the distribution of attack detection datasets is extremely imbalanced and the proportion of attack samples is very small, we propose a hierarchical aggregation algorithm based on K-Means and a data resampling method based on SMOTEENN. The result shows that our model improves the accuracy by 4% compared with the traditional method, and reduces the number of communication rounds by 40%.
Fahrianto, Feri, Kamiyama, Noriaki.  2021.  The Dual-Channel IP-to-NDN Translation Gateway. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–2.
The co-existence between Internet Protocol (IP) and Named-Data Networking (NDN) protocol is inevitable during the transition period. We propose a privacy-preserving translation method between IP and NDN called the dual-channel translation gateway. The gateway provides two different channels dedicated to the interest and the data packet to translate the IP to the NDN protocol and vice versa. Additionally, the name resolution table is provided at the gateway that binds an IP packet securely with a prefix name. Moreover, we compare the dual-channel gateway performance with the encapsulation gateway.
Zhu, Xiaoyan, Zhang, Yu, Zhu, Lei, Hei, Xinhong, Wang, Yichuan, Hu, Feixiong, Yao, Yanni.  2021.  Chinese named entity recognition method for the field of network security based on RoBERTa. 2021 International Conference on Networking and Network Applications (NaNA). :420–425.
As the mobile Internet is developing rapidly, people who use cell phones to access the Internet dominate, and the mobile Internet has changed the development environment of online public opinion and made online public opinion events spread more widely. In the online environment, any kind of public issues may become a trigger for the generation of public opinion and thus need to be controlled for network supervision. The method in this paper can identify entities from the event texts obtained from mobile Today's Headlines, People's Daily, etc., and informatize security of public opinion in event instances, thus strengthening network supervision and control in mobile, and providing sufficient support for national security event management. In this paper, we present a SW-BiLSTM-CRF model, as well as a model combining the RoBERTa pre-trained model with the classical neural network BiLSTM model. Our experiments show that this approach provided achieves quite good results on Chinese emergency corpus, with accuracy and F1 values of 87.21% and 78.78%, respectively.
Zhang, Zhiyi, Won, Su Yong, Zhang, Lixia.  2021.  Investigating the Design Space for Name Confidentiality in Named Data Networking. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :570–576.
As a fundamental departure from the IP design which encodes source and destination addresses in each packet, Named Data Networking (NDN) directly uses application-defined data names for network layer communications. While bringing important data-centric benefits, the semantic richness of NDN names has also raised confidentiality and privacy concerns. In this paper, we first define the problem of name confidentiality, and then investigate the solution space through a comprehensive examination of all the proposed solutions up to date. Our work shows that the proposed solutions are simply different means to hide the actual data names via a layer of translation; they differ in where and how the translation takes place, which lead to different trade-offs in feasibility, efficiency, security, scalability, and different degrees of adherence to NDN's data-centric communications. Our investigation suggests the feasibility of a systematic design that can enable NDN to provide stronger name confidentiality and user privacy as compared to today's TCP/IP Internet.
Djurayev, Rustam, Djabbarov, Shukhrat, Matkurbonov, Dilshod, Khasanov, Orifjon.  2021.  Approaches and Methods for Assessing the Information Security of Data Transmission Networks. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1–4.
The report examines approaches to assessing the information security of data transmission networks (DTN). The analysis of methods for quantitative assessment of information security risks is carried out. A methodological approach to the assessment of IS DTN based on the risk-oriented method is presented. A method for assessing risks based on the mathematical apparatus of the queening systems (QS) is considered and the problem of mathematical modeling is solved.
2022-05-12
Marian, Constantin Viorel.  2021.  DNS Records Secure Provisioning Mechanism for Virtual Machines automatic management in high density data centers. 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.

Nowadays is becoming trivial to have multiple virtual machines working in parallel on hardware platforms with high processing power. This appropriate cost effective approach can be found at Internet Service Providers, in cloud service providers’ environments, in research and development lab testing environment (for example Universities’ student’s lab), in virtual application for security evaluation and in many other places. In the aforementioned cases, it is often necessary to start and/or stop virtual machines on the fly. In cloud service providers all the creation / tear down actions are triggered by a customer request and cannot be postponed or delayed for later evaluation. When a new virtual machine is created, it is imperative to assign unique IP addresses to all network interfaces and also domain name system DNS records that contain text based data, IP addresses, etc. Even worse, if a virtual machine has to be stopped or torn down, the critical network resources such as IP addresses and DNS records have to be carefully controlled in order to avoid IP addresses conflicts and name resolution problems between an old virtual machine and a newly created virtual machine. This paper proposes a provisioning mechanism to avoid both DNS records and IP addresses conflicts due to human misconfiguration, problems that can cause networking operation service disruptions.

2020-05-29
Khelifi, Hakima, Luo, Senlin, Nour, Boubakr, Moungla, Hassine.  2019.  A QoS-Aware Cache Replacement Policy for Vehicular Named Data Networks. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

Vehicular Named Data Network (VNDN) uses Named Data Network (NDN) as a communication enabler. The communication is achieved using the content name instead of the host address. NDN integrates content caching at the network level rather than the application level. Hence, the network becomes aware of content caching and delivering. The content caching is a fundamental element in VNDN communication. However, due to the limitations of the cache store, only the most used content should be cached while the less used should be evicted. Traditional caching replacement policies may not work efficiently in VNDN due to the large and diverse exchanged content. To solve this issue, we propose an efficient cache replacement policy that takes the quality of service into consideration. The idea consists of classifying the traffic into different classes, and split the cache store into a set of sub-cache stores according to the defined traffic classes with different storage capacities according to the network requirements. Each content is assigned a popularity-density value that balances the content popularity with its size. Content with the highest popularity-density value is cached while the lowest is evicted. Simulation results prove the efficiency of the proposed solution to enhance the overall network quality of service.

Tseng, Yi-Fan, Fan, Chun-I, Wu, Chin-Yu.  2019.  FGAC-NDN: Fine-Grained Access Control for Named Data Networks. IEEE Transactions on Network and Service Management. 16:143—152.

Named data network (NDN) is one of the most promising information-centric networking architectures, where the core concept is to focus on the named data (or contents) themselves. Users in NDN can easily send a request packet to get the desired content regardless of its address. The routers in NDN have cache functionality to make the users instantly retrieve the desired file. Thus, the user can immediately get the desired file from the nearby nodes instead of the remote host. Nevertheless, NDN is a novel proposal and there are still some open issues to be resolved. In view of previous research, it is a challenge to achieve access control on a specific user and support potential receivers simultaneously. In order to solve it, we present a fine-grained access control mechanism tailored for NDN, supporting data confidentiality, potential receivers, and mobility. Compared to previous works, this is the first to support fine-grained access control and potential receivers. Furthermore, the proposed scheme achieves provable security under the DBDH assumption.

HOU, RUI, Han, Min, Chen, Jing, Hu, Wenbin, Tan, Xiaobin, Luo, Jiangtao, Ma, Maode.  2019.  Theil-Based Countermeasure against Interest Flooding Attacks for Named Data Networks. IEEE Network. 33:116—121.

NDN has been widely regarded as a promising representation and implementation of information- centric networking (ICN) and serves as a potential candidate for the future Internet architecture. However, the security of NDN is threatened by a significant safety hazard known as an IFA, which is an evolution of DoS and distributed DoS attacks on IP-based networks. The IFA attackers can create numerous malicious interest packets into a named data network to quickly exhaust the bandwidth of communication channels and cache capacity of NDN routers, thereby seriously affecting the routers' ability to receive and forward packets for normal users. Accurate detection of the IFAs is the most critical issue in the design of a countermeasure. To the best of our knowledge, the existing IFA countermeasures still have limitations in terms of detection accuracy, especially for rapidly volatile attacks. This article proposes a TC to detect the distributions of normal and malicious interest packets in the NDN routers to further identify the IFA. The trace back method is used to prevent further attempts. The simulation results show the efficiency of the TC for mitigating the IFAs and its advantages over other typical IFA countermeasures.

Yao, Lin, Jiang, Binyao, Deng, Jing, Obaidat, Mohammad S..  2019.  LSTM-Based Detection for Timing Attacks in Named Data Network. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

Named Data Network (NDN) is an alternative to host-centric networking exemplified by today's Internet. One key feature of NDN is in-network caching that reduces access delay and query overhead by caching popular contents at the source as well as at a few other nodes. Unfortunately, in-network caching suffers various privacy risks by different attacks, one of which is termed timing attack. This is an attack to infer whether a consumer has recently requested certain contents based on the time difference between the delivery time of those contents that are currently cached and those that are not cached. In order to prevent the privacy leakage and resist such kind of attacks, we propose a detection scheme by adopting Long Short-term Memory (LSTM) model. Based on the four input features of LSTM, cache hit ratio, average request interval, request frequency, and types of requested contents, we timely capture more important eigenvalues by dividing a constant time window size into a few small slices in order to detect timing attacks accurately. We have performed extensive simulations to compare our scheme with several other state-of-the-art schemes in classification accuracy, detection ratio, false alarm ratio, and F-measure. It has been shown that our scheme possesses a better performance in all cases studied.

Sattar, Muhammad Umar, Rehman, Rana Asif.  2019.  Interest Flooding Attack Mitigation in Named Data Networking Based VANETs. 2019 International Conference on Frontiers of Information Technology (FIT). :245—2454.

Nowadays network applications have more focus on content distribution which is hard to tackle in IP based Internet. Information Centric Network (ICN) have the ability to overcome this problem for various scenarios, specifically for Vehicular Ad Hoc Networks (VANETs). Conventional IP based system have issues like mobility management hence ICN solve this issue because data fetching is not dependent on a particular node or physical location. Many initial investigations have performed on an instance of ICN commonly known as Named Data Networking (NDN). However, NDN exposes the new type of security susceptibilities, poisoning cache attack, flooding Interest attack, and violation of privacy because the content in the network is called by the name. This paper focused on mitigation of Interest flooding attack by proposing new scheme, named Interest Flooding Attack Mitigation Scheme (IFAMS) in Vehicular Named Data Network (VNDN). Simulation results depict that proposed IFAMS scheme mitigates the Interest flooding attack in the network.

Arefin, Sayed Erfan, Heya, Tasnia Ashrafi, Chakrabarty, Amitabha.  2019.  Agent Based Fog Architecture using NDN and Trust Management for IoT. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :257—262.

Statistics suggests, proceeding towards IoT generation, is increasing IoT devices at a drastic rate. This will be very challenging for our present-day network infrastructure to manage, this much of data. This may risk, both security and traffic collapsing. We have proposed an infrastructure with Fog Computing. The Fog layer consists two layers, using the concepts of Service oriented Architecture (SOA) and the Agent based composition model which ensures the traffic usage reduction. In order to have a robust and secured system, we have modified the Fog based agent model by replacing the SOA with secured Named Data Network (NDN) protocol. Knowing the fact that NDN has the caching layer, we are combining NDN and with Fog, as it can overcome the forwarding strategy limitation and memory constraints of NDN by the Agent Society, in the Middle layer along with Trust management.

Liu, Xuejie, Bing, Qi, Lu, Xinhua, Zhong, Lihong, Wei, Da, Qu, Guannan.  2019.  An Identity Privacy Protection Strategy in Vehicle Named Data Network. 2019 IEEE International Conferences on Ubiquitous Computing Communications (IUCC) and Data Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS). :818—822.

Although Vehicle Named Data Network (VNDN) possess the communication benefits of Named Data Network and Vehicle Opportunity Network, it also introduces some new privacy problems, including the identity security of Data Requesters and Data Providers. Data providers in VNDN need to sign data packets directly, which will leak the identity information of the providers, while the vicinity malicious nodes can access the sensitive information of Data Requesters by analyzing the relationship between Data Requesters and the data names in Interest Packages that are sent directly in plaintext. In order to solve the above privacy problems, this paper presents an identity privacy protection strategy for Data Requesters and Data Providers in VNDN. A ring signature scheme is used to hide the correlation between the signature and the data provider and the anonymous proxy idea is used to protect the real identity of the data requester in the proposed strategy. Security Analysis and experiments in the ONE-based VNDN platform indicate that the proposed strategy is effective and practical.

2020-05-26
Tiennoy, Sasirom, Saivichit, Chaiyachet.  2018.  Using a Distributed Roadside Unit for the Data Dissemination Protocol in VANET With the Named Data Architecture. IEEE Access. 6:32612–32623.
Vehicular ad hoc network (VANET) has recently become one of the highly active research areas for wireless networking. Since VANET is a multi-hop wireless network with very high mobility and intermittent connection lifetime, it is important to effectively handle the data dissemination issue in this rapidly changing environment. However, the existing TCP/IP implementation may not fit into such a highly dynamic environment because the nodes in the network must often perform rerouting due to their inconsistency of connectivity. In addition, the drivers in the vehicles may want to acquire some data, but they do not know the address/location of such data storage. Hence, the named data networking (NDN) approach may be more desirable here. The NDN architecture is proposed for the future Internet, which focuses on the delivering mechanism based on the message contents instead of relying on the host addresses of the data. In this paper, a new protocol named roadside unit (RSU) assisted of named data network (RA-NDN) is presented. The RSU can operate as a standalone node [standalone RSU (SA-RSU)]. One benefit of deploying SA-RSUs is the improved network connectivity. This study uses the NS3 and SUMO software packages for the network simulator and traffic simulator software, respectively, to verify the performance of the RA-NDN protocol. To reduce the latency under various vehicular densities, vehicular transmission ranges, and number of requesters, the proposed approach is compared with vehicular NDN via a real-world data set in the urban area of Sathorn road in Bangkok, Thailand. The simulation results show that the RA-NDN protocol improves the performance of ad hoc communications with the increase in data received ratio and throughput and the decrease in total dissemination time and traffic load.
Wang, Kai, Zhao, Yude, liu, Shugang, Tong, Xiangrong.  2018.  On the urgency of implementing Interest NACK into CCN: from the perspective of countering advanced interest flooding attacks. IET Networks. 7:136–140.
Content centric networking (CCN) where content/named data as the first entity has become one of the most promising architectures for the future Internet. To achieve better security, the Interest NACK mechanism is introduced into CCN; however, it has not attracted enough attention and most of the CCN architectures do not embed Interest NACK until now. This study focuses on analysing the urgency of implementing Interest NACK into CCN, by designing a novel network threat named advanced interest flooding attack (AIFA) to attack CCN, which can not only exhaust the pending interest table (PIT) resource of each involved router just as normal interest flooding attack (IFA), but also keep each PIT entry unexpired until it finishes, making it harder to detect and more harmful when compared with the normal IFA. Specifically, the damage of AIFA on CCN architecture with and without Interest NACK is evaluated and analysed, compared with normal IFA, and then the urgency of implementing Interest NACK is highlighted.
Chatterjee, Tanusree, Ruj, Sushmita, DasBit, Sipra.  2018.  Data forwarding and update propagation in grid network for NDN: A low-overhead approach. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Now-a-days Internet has become mostly content centric. Named Data Network (NDN) has emerged as a promising candidate to cope with the use of today's Internet. Several NDN features such as in-network caching, easier data forwarding, etc. in the routing method bring potential advantages over conventional networks. Despite the advantages, there are many challenges in NDN which are yet to be addressed. In this paper, we address two of such challenges in NDN routing: (1) Huge storage overhead in NDN router (2) High communication over-heads in the network during propagation of routing information updates. We propose changes in existing NDN routing with the aim to provide a low-overhead solution to these problems. Here instead of storing the Link State Data Base (LSDB) in all the routers, it is kept in selected special nodes only. The use of special nodes lowers down the overall storage and update overheads. We also provide supporting algorithms for data forwarding and update for grid network. The performance of the proposed method is evaluated in terms of storage and communication overheads. The results show the overheads are reduced by almost one third as compared to the existing routing method in NDN.
Ostrovskaya, Svetlana, Surnin, Oleg, Hussain, Rasheed, Bouk, Safdar Hussain, Lee, JooYoung, Mehran, Narges, Ahmed, Syed Hassan, Benslimane, Abderrahim.  2018.  Towards Multi-metric Cache Replacement Policies in Vehicular Named Data Networks. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :1–7.
Vehicular Named Data Network (VNDN) uses NDN as an underlying communication paradigm to realize intelligent transportation system applications. Content communication is the essence of NDN, which is primarily carried out through content naming, forwarding, intrinsic content security, and most importantly the in-network caching. In vehicular networks, vehicles on the road communicate with other vehicles and/or infrastructure network elements to provide passengers a reliable, efficient, and infotainment-rich commute experience. Recently, different aspects of NDN have been investigated in vehicular networks and in vehicular social networks (VSN); however, in this paper, we investigate the in-network caching, realized in NDN through the content store (CS) data structure. As the stale contents in CS do not just occupy cache space, but also decrease the overall performance of NDN-driven VANET and VSN applications, therefore the size of CS and the content lifetime in CS are primary issues in VNDN communications. To solve these issues, we propose a simple yet efficient multi-metric CS management mechanism through cache replacement (M2CRP). We consider the content popularity, relevance, freshness, and distance of a node to devise a set of algorithms for selection of the content to be replaced in CS in the case of replacement requirement. Simulation results show that our multi-metric strategy outperforms the existing cache replacement mechanisms in terms of Hit Ratio.
Tahir, Muhammad Usman, Rehman, Rana Asif.  2018.  CUIF: Control of Useless Interests Flooding in Vehicular Named Data Networks. 2018 International Conference on Frontiers of Information Technology (FIT). :303–308.
Now-a-days vehicular information network technology is receiving a lot of attention due to its practical as well as safety related applications. By using this technology, participating vehicles can communicate among themselves on the road in order to obtain any interested data or emergency information. In Vehicular Ad-Hoc Network (VANET), due to the fast speed of the vehicles, the traditional host centric approach (i.e. TCP/IP) fails to provide efficient and robust communication between large number of vehicles. Therefore, Named Data Network (NDN) newly proposed Internet architecture is applied in VANET, named as VNDN. In which, the vehicles can communicate with the help of content name rather than vehicle address. In this paper, we explored the concepts and identify the main packet forwarding issues in VNDN. Furthermore, we proposed a protocol, named Control of Useless Interests Flooding (CUIF) in Vehicular Named Data Network. In which, it provides the best and efficient communication environment to users while driving on the highway. CUIF scheme reduces the Interest forwarding storm over the network and control the flooding of useless packets against the direction of a Producer vehicle. Our simulation results show that CUIF scheme decreases the number of outgoing Interest packets as well as data download time in the network.
Chatterjee, Tanusree, Ruj, Sushmita, Bit, Sipra Das.  2018.  Security Issues in Named Data Networks. Computer. 51:66–75.
Today's IP and content distribution networks are unable to fulfill all data distribution and security requirements. The named data network (NDN) has emerged as a promising candidate to cope with the Internet usage of the 21st century. Although the NDN has many built-in security features, this survey reviews several pressing security issues and open research areas.
Fan, Chun-I, Chen, I-Te, Cheng, Chen-Kai, Huang, Jheng-Jia, Chen, Wen-Tsuen.  2018.  FTP-NDN: File Transfer Protocol Based on Re-Encryption for Named Data Network Supporting Nondesignated Receivers. IEEE Systems Journal. 12:473–484.
Due to users' network flow requirement and usage amount nowadays, TCP/IP networks may face various problems. For one, users of video services may access simultaneously the same content, which leads to the host incurring extra costs. Second, although nearby nodes may have the file that a user wants to access, the user cannot directly verify the file itself. This issue will lead the user to connect to a remote host rather than the nearby nodes and causes the network traffic to greatly increase. Therefore, the named data network (NDN), which is based on data itself, was brought about to deal with the aforementioned problems. In NDN, all users can access a file from the nearby nodes, and they can directly verify the file themselves rather than the specific host who holds the file. However, NDN still has no complete standard and secure file transfer protocol to support the ciphertext transmission and the problem of the unknown potential receivers. The straightforward solution is that a sender uses the receiver's public key to encrypt a file before she/he sends the file to NDN nodes. However, it will limit the behavior of users and incur significant storage costs of NDN nodes. This paper presents a complete secure file transfer protocol, which combines the data re-encryption, satisfies the requirement of secure ciphertext transmission, solves the problem of the unknown potential receivers, and saves the significant storage costs of NDN nodes. The proposed protocol is the first one that achieves data confidentiality and solves the problem of the unknown potential receivers in NDN. Finally, we also provide formal security models and proofs for the proposed FTP-NDN.
2020-03-12
Dogruluk, Ertugrul, Costa, Antonio, Macedo, Joaquim.  2019.  A Detection and Defense Approach for Content Privacy in Named Data Network. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

The Named Data Network (NDN) is a promising network paradigm for content distribution based on caching. However, it may put consumer privacy at risk, as the adversary may identify the content, the name and the signature (namely a certificate) through side-channel timing responses from the cache of the routers. The adversary may identify the content name and the consumer node by distinguishing between cached and un- cached contents. In order to mitigate the timing attack, effective countermeasure methods have been proposed by other authors, such as random caching, random freshness, and probabilistic caching. In this work, we have implemented a timing attack scenario to evaluate the efficiency of these countermeasures and to demonstrate how the adversary can be detected. For this goal, a brute force timing attack scenario based on a real topology was developed, which is the first brute force attack model applied in NDN. Results show that the adversary nodes can be effectively distinguished from other legitimate consumers during the attack period. It is also proposed a multi-level mechanism to detect an adversary node. Through this approach, the content distribution performance can be mitigated against the attack.

2019-06-10
Arsalan, A., Rehman, R. A..  2018.  Prevention of Timing Attack in Software Defined Named Data Network with VANETs. 2018 International Conference on Frontiers of Information Technology (FIT). :247–252.

Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.

2018-06-11
Kondo, D., Silverston, T., Tode, H., Asami, T., Perrin, O..  2017.  Risk analysis of information-leakage through interest packets in NDN. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :360–365.

Information-leakage is one of the most important security issues in the current Internet. In Named-Data Networking (NDN), Interest names introduce novel vulnerabilities that can be exploited. By setting up a malware, Interest names can be used to encode critical information (steganography embedded) and to leak information out of the network by generating anomalous Interest traffic. This security threat based on Interest names does not exist in IP network, and it is essential to solve this issue to secure the NDN architecture. This paper performs risk analysis of information-leakage in NDN. We first describe vulnerabilities with Interest names and, as countermeasures, we propose a name-based filter using search engine information, and another filter using one-class Support Vector Machine (SVM). We collected URLs from the data repository provided by Common Crawl and we evaluate the performances of our per-packet filters. We show that our filters can choke drastically the throughput of information-leakage, which makes it easier to detect anomalous Interest traffic. It is therefore possible to mitigate information-leakage in NDN network and it is a strong incentive for future deployment of this architecture at the Internet scale.