Visible to the public Biblio

Filters: Keyword is Availability  [Clear All Filters]
2023-06-09
Wang, Jinwen, Li, Ao, Li, Haoran, Lu, Chenyang, Zhang, Ning.  2022.  RT-TEE: Real-time System Availability for Cyber-physical Systems using ARM TrustZone. 2022 IEEE Symposium on Security and Privacy (SP). :352—369.
Embedded devices are becoming increasingly pervasive in safety-critical systems of the emerging cyber-physical world. While trusted execution environments (TEEs), such as ARM TrustZone, have been widely deployed in mobile platforms, little attention has been given to deployment on real-time cyber-physical systems, which present a different set of challenges compared to mobile applications. For safety-critical cyber-physical systems, such as autonomous drones or automobiles, the current TEE deployment paradigm, which focuses only on confidentiality and integrity, is insufficient. Computation in these systems also needs to be completed in a timely manner (e.g., before the car hits a pedestrian), putting a much stronger emphasis on availability.To bridge this gap, we present RT-TEE, a real-time trusted execution environment. There are three key research challenges. First, RT-TEE bootstraps the ability to ensure availability using a minimal set of hardware primitives on commodity embedded platforms. Second, to balance real-time performance and scheduler complexity, we designed a policy-based event-driven hierarchical scheduler. Third, to mitigate the risks of having device drivers in the secure environment, we designed an I/O reference monitor that leverages software sandboxing and driver debloating to provide fine-grained access control on peripherals while minimizing the trusted computing base (TCB).We implemented prototypes on both ARMv8-A and ARMv8-M platforms. The system is tested on both synthetic tasks and real-life CPS applications. We evaluated rover and plane in simulation and quadcopter both in simulation and with a real drone.
2023-02-03
Muliono, Yohan, Darus, Mohamad Yusof, Pardomuan, Chrisando Ryan, Ariffin, Muhammad Azizi Mohd, Kurniawan, Aditya.  2022.  Predicting Confidentiality, Integrity, and Availability from SQL Injection Payload. 2022 International Conference on Information Management and Technology (ICIMTech). :600–605.
SQL Injection has been around as a harmful and prolific threat on web applications for more than 20 years, yet it still poses a huge threat to the World Wide Web. Rapidly evolving web technology has not eradicated this threat; In 2017 51 % of web application attacks are SQL injection attacks. Most conventional practices to prevent SQL injection attacks revolves around secure web and database programming and administration techniques. Despite developer ignorance, a large number of online applications remain susceptible to SQL injection attacks. There is a need for a more effective method to detect and prevent SQL Injection attacks. In this research, we offer a unique machine learning-based strategy for identifying potential SQL injection attack (SQL injection attack) threats. Application of the proposed method in a Security Information and Event Management(SIEM) system will be discussed. SIEM can aggregate and normalize event information from multiple sources, and detect malicious events from analysis of these information. The result of this work shows that a machine learning based SQL injection attack detector which uses SIEM approach possess high accuracy in detecting malicious SQL queries.
2022-10-20
Torquato, Matheus, Maciel, Paulo, Vieira, Marco.  2020.  Security and Availability Modeling of VM Migration as Moving Target Defense. 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC). :50—59.
Moving Target Defense (MTD) is a defensive mechanism based on dynamic system reconfiguration to prevent or thwart cyberattacks. In the last years, considerable progress has been made regarding MTD approaches for virtualized environments, and Virtual Machine (VM) migration is the core of most of these approaches. However, VM migration produces system downtime, meaning that each MTD reconfiguration affects system availability. Therefore, a method for a combined evaluation of availability and security is of utmost importance for VM migration-based MTD design. In this paper, we propose a Stochastic Reward Net (SRN) for the probability of attack success and availability evaluation of an MTD based on VM migration scheduling. We study the MTD system under different conditions regarding 1) VM migration scheduling, 2) VM migration failure probability, and 3) attack success rate. Our results highlight the tradeoff between availability and security when applying MTD based on VM migration. The approach and results may provide inputs for designing and evaluating MTD policies based on VM migration.
2022-08-03
Gao, Hongxia, Yu, Zhenhua, Cong, Xuya, Wang, Jing.  2021.  Trustworthiness Evaluation of Smart Grids Using GSPN. 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC). 1:1—7.
Smart grids are one of the most important applications of cyber-physical systems. They intelligently transmit energy to customers by information technology, and have replaced the traditional power grid and are widely used. However, smart grids are vulnerable to cyber-attacks. Once attacked, it will cause great losses and lose the trust of customers. Therefore, it is important to evaluate the trustworthiness of smart grids. In order to evaluate the trustworthiness of smart grids, this paper uses a generalized stochastic Petri net (GSPN) to model smart grids. Considering various security threats that smart grids may face, we propose a general GSPN model for smart grids, which evaluates trustworthiness from three metrics of reliability, availability, and integrity by analyzing steady-state and transient probabilities. Finally, we obtain the value of system trustworthiness and simulation results show that the feasibility and effectiveness of our model for smart grids trustworthiness.
2022-07-01
Yudin, Oleksandr, Cherniak, Andrii, Havrylov, Dmytro, Hurzhii, Pavlo, Korolyova, Natalia, Sidchenko, Yevhenii.  2021.  Video Coding Method in a Condition of Providing Security and Promptness of Delivery. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). :26—30.
In the course of the research, the research of discriminatory methods of handling video information resource based on the JPEG platform was carried out. This research showed a high interest of the scientific world in identifying important data at different phases of handling. However, the discriminatory handling of the video information resource after the quantization phase is not well understood. Based on the research data, the goal is to find possible ways to operation a video information resource based on a JPEG platform in order to identify important data in a telecommunications system. At the same time, the proposed strategies must provide the required pace of dynamic picture grade and hiding in the context of limited bandwidth. The fulfillment of the condition with limited bandwidth is achieved through the use of a lossless compression algorism based on arithmetic coding. The purpose of the study is considered to be achieved if the following requirements are met:1.Reduction of the volume of dynamic pictures by 30% compared to the initial amount;2.The quality pace is confirmed by an estimate of the peak signal-to-noise ratio for an authorized user, which is Ψauthor ≥ 20 dB;3.The pace of hiding is confirmed by an estimate of the peak signal-to-noise ratio for unauthorized access, which is Ψunauthor ≤ 9 dBThe first strategy is to use encryption tables. The advantage of this strategy is its high hiding strength.The second strategy is the important matrix method. The advantage of this strategy is higher performance.Thus, the goal of the study on the development of possible ways of handling a video information resource based on a JPEG platform in order to identify important data in a telecommunication system with the given requirements is achieved.
2022-06-09
Ude, Okechukwu, Swar, Bobby.  2021.  Securing Remote Access Networks Using Malware Detection Tools for Industrial Control Systems. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :166–171.
With their role as an integral part of its infrastructure, Industrial Control Systems (ICS) are a vital part of every nation's industrial development drive. Despite several significant advancements - such as controlled-environment agriculture, automated train systems, and smart homes, achieved in critical infrastructure sectors through the integration of Information Systems (IS) and remote capabilities with ICS, the fact remains that these advancements have introduced vulnerabilities that were previously either nonexistent or negligible, one being Remote Access Trojans (RATs). Present RAT detection methods either focus on monitoring network traffic or studying event logs on host systems. This research's objective is the detection of RATs by comparing actual utilized system capacity to reported utilized system capacity. To achieve the research objective, open-source RAT detection methods were identified and analyzed, a GAP-analysis approach was used to identify the deficiencies of each method, after which control algorithms were developed into source code for the solution.
2021-04-27
Altarawneh, A., Skjellum, A..  2020.  The Security Ingredients for Correct and Byzantine Fault-tolerant Blockchain Consensus Algorithms. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—9.

The blockchain technology revolution and the use of blockchains in various applications have resulted in many companies and programmers developing and customizing specific fit-for-purpose consensus algorithms. Security and performance are determined by the chosen consensus algorithm; hence, the reliability and security of these algorithms must be assured and tested, which requires an understanding of all the security assumptions that make such algorithms correct and byzantine fault-tolerant.This paper studies the "security ingredients" that enable a given consensus algorithm to achieve safety, liveness, and byzantine fault tolerance (BFT) in both permissioned and permissionless blockchain systems. The key contributions of this paper are the organization of these requirements and a new taxonomy that describes the requirements for security. The CAP Theorem is utilized to explain important tradeoffs between consistency and availability in consensus algorithm design, which are crucial depending on the specific application of a given algorithm. This topic has also been explored previously by De Angelis. However, this paper expands that prior explanation and dilemma of consistency vs. availability and then combines this with Buterin's Trilemma to complete the overall exposition of tradeoffs.

Agirre, I., Onaindia, P., Poggi, T., Yarza, I., Cazorla, F. J., Kosmidis, L., Grüttner, K., Abuteir, M., Loewe, J., Orbegozo, J. M. et al..  2020.  UP2DATE: Safe and secure over-the-air software updates on high-performance mixed-criticality systems. 2020 23rd Euromicro Conference on Digital System Design (DSD). :344–351.
Following the same trend of consumer electronics, safety-critical industries are starting to adopt Over-The-Air Software Updates (OTASU) on their embedded systems. The motivation behind this trend is twofold. On the one hand, OTASU offer several benefits to the product makers and users by improving or adding new functionality and services to the product without a complete redesign. On the other hand, the increasing connectivity trend makes OTASU a crucial cyber-security demand to download latest security patches. However, the application of OTASU in the safety-critical domain is not free of challenges, specially when considering the dramatic increase of software complexity and the resulting high computing performance demands. This is the mission of UP2DATE, a recently launched project funded within the European H2020 programme focused on new software update architectures for heterogeneous high-performance mixed-criticality systems. This paper gives an overview of UP2DATE and its foundations, which seeks to improve existing OTASU solutions by considering safety, security and availability from the ground up in an architecture that builds around composability and modularity.
2021-04-08
Yaseen, Q., Panda, B..  2012.  Tackling Insider Threat in Cloud Relational Databases. 2012 IEEE Fifth International Conference on Utility and Cloud Computing. :215—218.
Cloud security is one of the major issues that worry individuals and organizations about cloud computing. Therefore, defending cloud systems against attacks such asinsiders' attacks has become a key demand. This paper investigates insider threat in cloud relational database systems(cloud RDMS). It discusses some vulnerabilities in cloud computing structures that may enable insiders to launch attacks, and shows how load balancing across multiple availability zones may facilitate insider threat. To prevent such a threat, the paper suggests three models, which are Peer-to-Peer model, Centralized model and Mobile-Knowledgebase model, and addresses the conditions under which they work well.
2020-11-17
Singh, M., Butakov, S., Jaafar, F..  2018.  Analyzing Overhead from Security and Administrative Functions in Virtual Environment. 2018 International Conference on Platform Technology and Service (PlatCon). :1—6.
The paper provides an analysis of the performance of an administrative component that helps the hypervisor to manage the resources of guest operating systems under fluctuation workload. The additional administrative component provides an extra layer of security to the guest operating systems and system as a whole. In this study, an administrative component was implemented by using Xen-hypervisor based para-virtualization technique and assigned some additional roles and responsibilities that reduce hypervisor workload. The study measured the resource utilizations of an administrative component when excessive input/output load passes passing through the system. Performance was measured in terms of bandwidth and CPU utilisation Based on the analysis of administrative component performance recommendations have been provided with the goal to improve system availability. Recommendations included detection of the performance saturation point that indicates the necessity to start load balancing procedures for the administrative component in the virtualized environment.
2020-02-17
Firdaus, Muhammad, Haryadi, Sigit, Shalannanda, Wervyan.  2019.  Sleeping Cell Analysis in LTE Network with Self-Healing Approach. 2019 IEEE 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA). :261–266.
In cellular network systems, it is commonly found that many errors or failures are caused by non-functioning components or human errors. Most failures are detected by a centralized Operation and Maintenance (OAM) software which will trigger an alarm as a form of warning. In fact, there are conditions when a failure or error occurs, but it cannot be detected by OAM software, which in turn will result in many complaints coming from customers. An event like this is called a sleeping cell, which is a condition where the network has a poor performance but does not generate alarm notifications in the Operation and Maintenance Center. In this paper, sleeping cell analysis was carried out on the LTE network using a self-healing approach to speed up the cell outage detection process. The process of sleeping cell analysis was based on the database of cell performance daily for all eNodeB located in West Java, referring the uplink and downlink values as the main parameters. The acquired database would then be processed and analyzed by the measurement method based on inference statistics, where this method would process a portion of the research data (sample), to draw the conclusions regarding the characteristics of the overall data population. Furthermore, data analysis was performed with signaling ladder diagram (SLD) approach to observe the signaling flow on the network, specifically in the uplink and downlink process, which is the initial indication of a sleeping cell.
2020-01-21
Harttung, Julian, Franz, Elke, Moriam, Sadia, Walther, Paul.  2019.  Lightweight Authenticated Encryption for Network-on-Chip Communications. Proceedings of the 2019 on Great Lakes Symposium on VLSI. :33–38.
In recent years, Network-on-Chip (NoC) has gained increasing popularity as a promising solution for the challenging interconnection problem in multi-processor systems-on-chip (MPSoCs). However, the interest of adversaries to compromise such systems grew accordingly, mandating the integration of security measures into NoC designs. Within this paper, we introduce three novel lightweight approaches for securing communication in NoCs. The suggested solutions combine encryption, authentication, and network coding in order to ensure confidentiality, integrity, and robustness. With performance being critical in NoC environments, our solutions particularly emphasize low latencies and low chip area. Our approaches were evaluated through extensive software simulations. The results have shown that the performance degradation induced by the protection measures is clearly outweighed by the aforementioned benefits. Furthermore, the area overhead implied by the additional components is reasonably low.
2019-12-18
Alperovitch, Dmitri.  2011.  Towards establishment of cyberspace deterrence strategy. 2011 3rd International Conference on Cyber Conflict. :1–8.
The question of whether strategic deterrence in cyberspace is achievable given the challenges of detection, attribution and credible retaliation is a topic of contention among military and civilian defense strategists. This paper examines the traditional strategic deterrence theory and its application to deterrence in cyberspace (the newly defined 5th battlespace domain, following land, air, sea and space domains), which is being used increasingly by nation-states and their proxies to achieve information dominance and to gain tactical and strategic economic and military advantage. It presents a taxonomy of cyberattacks that identifies which types of threats in the confidentiality, integrity, availability cybersecurity model triad present the greatest risk to nation-state economic and military security, including their political and social facets. The argument is presented that attacks on confidentiality cannot be subject to deterrence in the current international legal framework and that the focus of strategy needs to be applied to integrity and availability attacks. A potential cyberdeterrence strategy is put forth that can enhance national security against devastating cyberattacks through a credible declaratory retaliation capability that establishes red lines which may trigger a counter-strike against all identifiable responsible parties. The author believes such strategy can credibly influence nation-state threat actors who themselves exhibit serious vulnerabilities to cyber attacks from launching a devastating cyber first strike.
2019-06-17
Noroozi, Hamid, Khodaei, Mohammad, Papadimitratos, Panos.  2018.  VPKIaaS: A Highly-Available and Dynamically-Scalable Vehicular Public-Key Infrastructure. Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :302–304.
The central building block of secure and privacy-preserving Vehicular Communication (VC) systems is a Vehicular Public-Key Infrastructure (VPKI), which provides vehicles with multiple anonymized credentials, termed pseudonyms. These pseudonyms are used to ensure message authenticity and integrity while preserving vehicle (and thus passenger) privacy. In the light of emerging large-scale multi-domain VC environments, the efficiency of the VPKI and, more broadly, its scalability are paramount. In this extended abstract, we leverage the state-of-the-art VPKI system and enhance its functionality towards a highly-available and dynamically-scalable design; this ensures that the system remains operational in the presence of benign failures or any resource depletion attack, and that it dynamically scales out, or possibly scales in, according to the requests' arrival rate. Our full-blown implementation on the Google Cloud Platform shows that deploying a VPKI for a large-scale scenario can be cost-effective, while efficiently issuing pseudonyms for the requesters.
2019-03-11
Hoeller, A., Toegl, R..  2018.  Trusted Platform Modules in Cyber-Physical Systems: On the Interference Between Security and Dependability. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :136–144.

Cyber physical systems are the key innovation driver for many domains such as automotive, avionics, industrial process control, and factory automation. However, their interconnection potentially provides adversaries easy access to sensitive data, code, and configurations. If attackers gain control, material damage or even harm to people must be expected. To counteract data theft, system manipulation and cyber-attacks, security mechanisms must be embedded in the cyber physical system. Adding hardware security in the form of the standardized Trusted Platform Module (TPM) is a promising approach. At the same time, traditional dependability features such as safety, availability, and reliability have to be maintained. To determine the right balance between security and dependability it is essential to understand their interferences. This paper supports developers in identifying the implications of using TPMs on the dependability of their system.We highlight potential consequences of adding TPMs to cyber-physical systems by considering the resulting safety, reliability, and availability. Furthermore, we discuss the potential of enhancing the dependability of TPM services by applying traditional redundancy techniques.

2019-02-14
Leemaster, J., Vai, M., Whelihan, D., Whitman, H., Khazan, R..  2018.  Functionality and Security Co-Design Environment for Embedded Systems. 2018 IEEE High Performance Extreme Computing Conference (HPEC). :1-5.

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus equally on functionality and security in both hardware and software development. For critical missions, these systems must be entrusted to perform their intended functions, prevent attacks, and even operate with resilience under attacks. The processor in a critical system must thus provide not only a root of trust, but also a foundation to monitor mission functions, detect anomalies, and perform recovery. We have developed a Lincoln Asymmetric Multicore Processing (LAMP) architecture, which mitigates adversarial cyber effects with separation and cryptography and provides a foundation to build a resilient embedded system. We will describe a design environment that we have created to enable the co-design of functionality and security for mission assurance.

2019-01-21
Houmer, M., Hasnaoui, M. L., Elfergougui, A..  2018.  Security Analysis of Vehicular Ad-hoc Networks based on Attack Tree. 2018 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT). :21–26.

Nowadays, Vehicular ad hoc network confronts many challenges in terms of security and privacy, due to the fact that data transmitted are diffused in an open access environment. However, highest of drivers want to maintain their information discreet and protected, and they do not want to share their confidential information. So, the private information of drivers who are distributed in this network must be protected against various threats that may damage their privacy. That is why, confidentiality, integrity and availability are the important security requirements in VANET. This paper focus on security threat in vehicle network especially on the availability of this network. Then we regard the rational attacker who decides to lead an attack based on its adversary's strategy to maximize its own attack interests. Our aim is to provide reliability and privacy of VANET system, by preventing attackers from violating and endangering the network. to ensure this objective, we adopt a tree structure called attack tree to model the attacker's potential attack strategies. Also, we join the countermeasures to the attack tree in order to build attack-defense tree for defending these attacks.

Madhupriya, G., Shalinie, S. M., Rajeshwari, A. R..  2018.  Detecting DDoS Attack in Cloud Computing Using Local Outlier Factors. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :859–863.

Now a days, Cloud computing has brought a unbelievable change in companies, organizations, firm and institutions etc. IT industries is advantage with low investment in infrastructure and maintenance with the growth of cloud computing. The Virtualization technique is examine as the big thing in cloud computing. Even though, cloud computing has more benefits; the disadvantage of the cloud computing environment is ensuring security. Security means, the Cloud Service Provider to ensure the basic integrity, availability, privacy, confidentiality, authentication and authorization in data storage, virtual machine security etc. In this paper, we presented a Local outlier factors mechanism, which may be helpful for the detection of Distributed Denial of Service attack in a cloud computing environment. As DDoS attack becomes strong with the passing of time, and then the attack may be reduced, if it is detected at first. So we fully focused on detecting DDoS attack to secure the cloud environment. In addition, our scheme is able to identify their possible sources, giving important clues for cloud computing administrators to spot the outliers. By using WEKA (Waikato Environment for Knowledge Analysis) we have analyzed our scheme with other clustering algorithm on the basis of higher detection rates and lower false alarm rate. DR-LOF would serve as a better DDoS detection tool, which helps to improve security framework in cloud computing.

2018-07-18
Takada, Tetsuji.  2017.  Authentication Shutter: Alternative Countermeasure Against Password Reuse Attack by Availability Control. Proceedings of the 12th International Conference on Availability, Reliability and Security. :41:1–41:9.

A mass attack to web services using leaked account information has been done in recent years. The causes of the attack are information leakage and use of a same password among multiple services. Available measures to the attack are mainly using an alternative authentication method such as two-factor authentication or one-time password. Such measures put an additional operation load or credential management on users, and may also impose additional management costs to users or service providers for dedicated devices. These issues limit the applicability of such measures to only parts of various services. Therefore, I propose an alternative measure against the attack by using the concept of shutters in car garages. The proposed scheme is referred as the "authentication shutter". In this scheme, a legitimate user can control the availability of user authentication directly. This means that, even if an attacker has a valid user ID and password, if a legitimate user sets the user authentication as unavailable, an attacker cannot pass user authentication. I explain the basic idea and how to implement the scheme as a web system, and also discuss about the usability and security of the scheme.

2018-05-16
Yang, Fan, Chien, Andrew A., Gunawi, Haryadi S..  2017.  Resilient Cloud in Dynamic Resource Environments. Proceedings of the 2017 Symposium on Cloud Computing. :627–627.
Traditional cloud stacks are designed to tolerate random, small-scale failures, and can successfully deliver highly-available cloud services and interactive services to end users. However, they fail to survive large-scale disruptions that are caused by major power outage, cyber-attack, or region/zone failures. Such changes trigger cascading failures and significant service outages. We propose to understand the reasons for these failures, and create reliable data services that can efficiently and robustly tolerate such large-scale resource changes. We believe cloud services will need to survive frequent, large dynamic resource changes in the future to be highly available. (1) Significant new challenges to cloud reliability are emerging, including cyber-attacks, power/network outages, and so on. For example, human error disrupted Amazon S3 service on 02/28/17 [2]. Recently hackers are even attacking electric utilities, which may lead to more outages [3, 6]. (2) Increased attention on resource cost optimization will increase usage dynamism, such as Amazon Spot Instances [1]. (3) Availability focused cloud applications will increasingly practice continuous testing to ensure they have no hidden source of catastrophic failure. For example, Netflix Simian Army can simulate the outages of individual servers, and even an entire AWS region [4]. (4) Cloud applications with dynamic flexibility will reap numerous benefits, such as flexible deployments, managing cost arbitrage and reliability arbitrage across cloud provides and datacenters, etc. Using Apache Cassandra [5] as the model system, we characterize its failure behavior under dynamic datacenter-scale resource changes. Each datacenter is volatile and randomly shut down with a given duty factor. We simulate read-only workload on a quorum-based system deployed across multiple datacenters, varying (1) system scale, (2) the fraction of volatile datacenters, and (3) the duty factor of volatile datacenters. We explore the space of various configurations, including replication factors and consistency levels, and measure the service availability (% of succeeded requests) and replication overhead (number of total replicas). Our results show that, in a volatile resource environment, the current replication and quorum protocols in Cassandra-like systems cannot high availability and consistency with low replication overhead. Our contributions include: (1) Detailed characterization of failures under dynamic datacenter-scale resource changes, showing that the exiting protocols in quorum-based systems cannot achieve high availability and consistency with low replication cost. (2) Study of the best achieve-able availability of data service in dynamic datacenter-scale resource environment.
2018-02-27
Elattar, M., Cao, T., Wendt, V., Jaspemeite, J., Trächtler, A..  2017.  Reliable Multipath Communication Approach for Internet-Based Cyber-Physical Systems. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). :1226–1233.

The vision of cyber-physical systems (CPSs) considered the Internet as the future communication network for such systems. A challenge with this regard is to provide high communication reliability, especially, for CPSs applications in critical infrastructures. Examples include smart grid applications with reliability requirements between 99-99.9999% [2]. Even though the Internet is a cost effective solution for such applications, the reliability of its end-to-end (e2e) paths is inadequate (often less than 99%). In this paper, we propose Reliable Multipath Communication Approach for Internet-based CPSs (RC4CPS). RC4CPS is an e2e approach that utilizes the inherent redundancy of the Internet and multipath (MP) transport protocols concept to improve reliability measured in terms of availability. It provides online monitoring and MP selection in order to fulfill the application specific reliability requirement. In addition, our MP selection considers e2e paths dependency and unavailability prediction to maximize the reliability gains of MP communication. Our results show that RC4CPS dynamic MP selection satisfied the reliability requirement along with selecting e2e paths with low dependency and unavailability probability.

2017-12-04
Boudguiga, A., Bouzerna, N., Granboulan, L., Olivereau, A., Quesnel, F., Roger, A., Sirdey, R..  2017.  Towards Better Availability and Accountability for IoT Updates by Means of a Blockchain. 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :50–58.

Building the Internet of Things requires deploying a huge number of objects with full or limited connectivity to the Internet. Given that these objects are exposed to attackers and generally not secured-by-design, it is essential to be able to update them, to patch their vulnerabilities and to prevent hackers from enrolling them into botnets. Ideally, the update infrastructure should implement the CIA triad properties, i.e., confidentiality, integrity and availability. In this work, we investigate how the use of a blockchain infrastructure can meet these requirements, with a focus on availability. In addition, we propose a peer-to-peer mechanism, to spread updates between objects that have limited access to the Internet. Finally, we give an overview of our ongoing prototype implementation.

2017-05-19
Gupta, Pragya Kirti, Schaetz, Bernhard.  2016.  Constraint-based Graceful Degradation in Smart Grids. Proceedings of the 2Nd International Workshop on Software Engineering for Smart Cyber-Physical Systems. :8–14.

In a electrical distribution network, the challenges involved in the decentralized power generation and the resilience of the network to handle the failures, can be easily anticipated. With the use of information technology, a better control can be achieved over the distributed generation units and the fault handling in them. In this contribution, the use of a graceful degradation strategy is proposed as a means to improve the availability of the system during a fault situation. The Graceful degradation is presented as a constraint satisfaction problem. The trigger and the computation of the degradation process are formulated as the constraints. The concept of the utility of the resources is used to support a dynamic decision to trigger the degradation process. The computation of the graceful degradation strategy is formalized as an SMT problem and analyzed using the Z3 SMT-solver. The approach is illustrated with the help of a use case of applying the degradation strategy on a prosumer node during the power outage in the distribution network. It illustrates the dynamic calculation capability of the degradation scheme in the face of an unpredictable power from a renewable energy resource.

2015-05-06
Xiaoyong Li, Huadong Ma, Feng Zhou, Xiaolin Gui.  2015.  Service Operator-Aware Trust Scheme for Resource Matchmaking across Multiple Clouds. Parallel and Distributed Systems, IEEE Transactions on. 26:1419-1429.

This paper proposes a service operator-aware trust scheme (SOTS) for resource matchmaking across multiple clouds. Through analyzing the built-in relationship between the users, the broker, and the service resources, this paper proposes a middleware framework of trust management that can effectively reduces user burden and improve system dependability. Based on multidimensional resource service operators, we model the problem of trust evaluation as a process of multi-attribute decision-making, and develop an adaptive trust evaluation approach based on information entropy theory. This adaptive approach can overcome the limitations of traditional trust schemes, whereby the trusted operators are weighted manually or subjectively. As a result, using SOTS, the broker can efficiently and accurately prepare the most trusted resources in advance, and thus provide more dependable resources to users. Our experiments yield interesting and meaningful observations that can facilitate the effective utilization of SOTS in a large-scale multi-cloud environment.

Al-Anzi, F.S., Salman, A.A., Jacob, N.K., Soni, J..  2014.  Towards robust, scalable and secure network storage in Cloud Computing. Digital Information and Communication Technology and it's Applications (DICTAP), 2014 Fourth International Conference on. :51-55.

The term Cloud Computing is not something that appeared overnight, it may come from the time when computer system remotely accessed the applications and services. Cloud computing is Ubiquitous technology and receiving a huge attention in the scientific and industrial community. Cloud computing is ubiquitous, next generation's in-formation technology architecture which offers on-demand access to the network. It is dynamic, virtualized, scalable and pay per use model over internet. In a cloud computing environment, a cloud service provider offers “house of resources” includes applications, data, runtime, middleware, operating system, virtualization, servers, data storage and sharing and networking and tries to take up most of the overhead of client. Cloud computing offers lots of benefits, but the journey of the cloud is not very easy. It has several pitfalls along the road because most of the services are outsourced to third parties with added enough level of risk. Cloud computing is suffering from several issues and one of the most significant is Security, privacy, service availability, confidentiality, integrity, authentication, and compliance. Security is a shared responsibility of both client and service provider and we believe security must be information centric, adaptive, proactive and built in. Cloud computing and its security are emerging study area nowadays. In this paper, we are discussing about data security in cloud at the service provider end and proposing a network storage architecture of data which make sure availability, reliability, scalability and security.