Visible to the public Biblio

Filters: Keyword is game-theoretic framework  [Clear All Filters]
2021-03-29
Kotra, A., Eldosouky, A., Sengupta, S..  2020.  Every Anonymization Begins with k: A Game-Theoretic Approach for Optimized k Selection in k-Anonymization. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). :1–6.
Privacy preservation is one of the greatest concerns when data is shared between different organizations. On the one hand, releasing data for research purposes is inevitable. On the other hand, sharing this data can jeopardize users' privacy. An effective solution, for the sharing organizations, is to use anonymization techniques to hide the users' sensitive information. One of the most popular anonymization techniques is k-Anonymization in which any data record is indistinguishable from at least k-1 other records. However, one of the fundamental challenges in choosing the value of k is the trade-off between achieving a higher privacy and the information loss associated with the anonymization. In this paper, the problem of choosing the optimal anonymization level for k-anonymization, under possible attacks, is studied when multiple organizations share their data to a common platform. In particular, two common types of attacks are considered that can target the k-anonymization technique. To this end, a novel game-theoretic framework is proposed to model the interactions between the sharing organizations and the attacker. The problem is formulated as a static game and its different Nash equilibria solutions are analytically derived. Simulation results show that the proposed framework can significantly improve the utility of the sharing organizations through optimizing the choice of k value.
2021-01-22
Zhang, H., Liu, H., Liang, J., Li, T., Geng, L., Liu, Y., Chen, S..  2020.  Defense Against Advanced Persistent Threats: Optimal Network Security Hardening Using Multi-stage Maze Network Game. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.

Advanced Persistent Threat (APT) is a stealthy, continuous and sophisticated method of network attacks, which can cause serious privacy leakage and millions of dollars losses. In this paper, we introduce a new game-theoretic framework of the interaction between a defender who uses limited Security Resources(SRs) to harden network and an attacker who adopts a multi-stage plan to attack the network. The game model is derived from Stackelberg games called a Multi-stage Maze Network Game (M2NG) in which the characteristics of APT are fully considered. The possible plans of the attacker are compactly represented using attack graphs(AGs), but the compact representation of the attacker's strategies presents a computational challenge and reaching the Nash Equilibrium(NE) is NP-hard. We present a method that first translates AGs into Markov Decision Process(MDP) and then achieves the optimal SRs allocation using the policy hill-climbing(PHC) algorithm. Finally, we present an empirical evaluation of the model and analyze the scalability and sensitivity of the algorithm. Simulation results exhibit that our proposed reinforcement learning-based SRs allocation is feasible and efficient.

2020-06-08
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
2018-07-06
Zhang, R., Zhu, Q..  2017.  A game-theoretic defense against data poisoning attacks in distributed support vector machines. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :4582–4587.

With a large number of sensors and control units in networked systems, distributed support vector machines (DSVMs) play a fundamental role in scalable and efficient multi-sensor classification and prediction tasks. However, DSVMs are vulnerable to adversaries who can modify and generate data to deceive the system to misclassification and misprediction. This work aims to design defense strategies for DSVM learner against a potential adversary. We use a game-theoretic framework to capture the conflicting interests between the DSVM learner and the attacker. The Nash equilibrium of the game allows predicting the outcome of learning algorithms in adversarial environments, and enhancing the resilience of the machine learning through dynamic distributed algorithms. We develop a secure and resilient DSVM algorithm with rejection method, and show its resiliency against adversary with numerical experiments.