SAMMOUD, Amal, CHALOUF, Mohamed Aymen, HAMDI, Omessaad, MONTAVONT, Nicolas, Bouallègue, Ammar.
2020.
A secure and lightweight three-factor authentication and key generation scheme for direct communication between healthcare professionals and patient’s WMSN. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.
One of the main security issues in telecare medecine information systems is the remote user authentication and key agreement between healthcare professionals and patient's medical sensors. Many of the proposed approaches are based on multiple factors (password, token and possibly biometrics). Two-factor authentication protocols do not resist to many possible attacks. As for three-factor authentication schemes, they usually come with high resource consumption. Since medical sensors have limited storage and computational capabilities, ensuring a minimal resources consumption becomes a major concern in this context. In this paper, we propose a secure and lightweight three-factor authentication and key generation scheme for securing communications between healtcare professional and patient's medical sensors. Thanks to formal verification, we prove that this scheme is robust enough against known possible attacks. A comparison with the most relevant related work's schemes shows that our protocol ensures an optimised resource consumption level.
Hou, Dai, Han, Hao, Novak, Ed.
2020.
TAES: Two-factor Authentication with End-to-End Security against VoIP Phishing. 2020 IEEE/ACM Symposium on Edge Computing (SEC). :340—345.
In the current state of communication technology, the abuse of VoIP has led to the emergence of telecommunications fraud. We urgently need an end-to-end identity authentication mechanism to verify the identity of the caller. This paper proposes an end-to-end, dual identity authentication mechanism to solve the problem of telecommunications fraud. Our first technique is to use the Hermes algorithm of data transmission technology on an unknown voice channel to transmit the certificate, thereby authenticating the caller's phone number. Our second technique uses voice-print recognition technology and a Gaussian mixture model (a general background probabilistic model) to establish a model of the speaker to verify the caller's voice to ensure the speaker's identity. Our solution is implemented on the Android platform, and simultaneously tests and evaluates transmission efficiency and speaker recognition. Experiments conducted on Android phones show that the error rate of the voice channel transmission signature certificate is within 3.247 %, and the certificate signature verification mechanism is feasible. The accuracy of the voice-print recognition is 72%, making it effective as a reference for identity authentication.
Li, Jiawei, Wang, Chuyu, Li, Ang, Han, Dianqi, Zhang, Yan, Zuo, Jinhang, Zhang, Rui, Xie, Lei, Zhang, Yanchao.
2020.
RF-Rhythm: Secure and Usable Two-Factor RFID Authentication. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2194—2203.
Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user's tapping rhythm. In addition to verifying the RFID card's identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user's secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero.
Obaidat, Muath, Brown, Joseph.
2020.
Two Factor Hash Verification (TFHV): A Novel Paradigm for Remote Authentication. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—4.
Current paradigms for client-server authentication often rely on username/password schemes. Studies show such schemes are increasingly vulnerable to heuristic and brute-force attacks. This is either due to poor practices by users such as insecure weak passwords, or insecure systems by server operators. A recurring problem in any system which retains information is insecure management policies for sensitive information, such as logins and passwords, by both hosts and users. Increased processing power on the horizon also threatens the security of many popular hashing algorithms. Furthermore, increasing reliance on applications that exchange sensitive information has resulted in increased urgency. This is demonstrated by a large number of mobile applications being deemed insecure by Open Web Application Security Project (OWASP) standards. This paper proposes a secure alternative technique of authentication that retains the current ecosystem, while minimizes attack vectors without inflating responsibilities on users or server operators. Our proposed authentication scheme uses layered encryption techniques alongside a two-part verification process. In addition, it provides dynamic protection for preventing against common cyber-attacks such as replay and man-in-the-middle attacks. Results show that our proposed authentication mechanism outperform other schemes in terms of deployability and resilience to cyber-attacks, without inflating transaction's speed.
Oktian, Yustus Eko, Lee, Sang-Gon, Lee, Hoon-Jae.
2020.
TwoChain: Leveraging Blockchain and Smart Contract for Two Factor Authentication. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). :187—191.
User identity and personal information remain to be hot targets for attackers. From recent surveys, we can categorize that 65.5% of all cyberattacks in 2018 target user information. Sadly, most of the time, the system's security depends on how secure it is the implementation from the provider-side. One defense technique that the user can take part in is applying a two-factor authentication (2FA) system for their account. However, we observe that state-of-the-art 2FAs have several weaknesses and limitations. In this paper, we propose TwoChain, a blockchain-based 2FA system for web services to overcome those issues. Our implementation facilitates an alternative 2FA system that is more secure, disposable, and decentralized. Finally, we release TwoChain for public use.
Alamsyah, Zaenal, Mantoro, Teddy, Adityawarman, Umar, Ayu, Media Anugerah.
2020.
Combination RSA with One Time Pad for Enhanced Scheme of Two-Factor Authentication. 2020 6th International Conference on Computing Engineering and Design (ICCED). :1—5.
RSA is a popular asymmetric key algorithm with two keys scheme, a public key for encryption and private key for decryption. RSA has weaknesses in encryption and decryption of data, including slow in the process of encryption and decryption because it uses a lot of number generation. The reason is RSA algorithm can work well and is resistant to attacks such as brute force and statistical attacks. in this paper, it aims to strengthen the scheme by combining RSA with the One Time Pad algorithm so that it will bring up a new design to be used to enhance security on two-factor authentication. Contribution in this paper is to find a new scheme algorithm for an enhanced scheme of RSA. One Time Pad and RSA can combine as well.
Wahyudono, Bintang, Ogi, Dion.
2020.
Implementation of Two Factor Authentication based on RFID and Face Recognition using LBP Algorithm on Access Control System. 2020 International Conference on ICT for Smart Society (ICISS). CFP2013V-ART:1—6.
Studies on two-factor authentication based on RFID and face recognition have been carried out on a large scale. However, these studies didn't discuss the way to overcome the weaknesses of face recognition authentication in the access control systems. In this study, two authentication factors, RFID and face recognition, were implemented using the LBP (Local Binary Pattern) algorithm to overcome weaknesses of face recognition authentication in the access control system. Based on the results of performance testing, the access control system has 100% RFID authentication and 80% face recognition authentication. The average time for the RFID authentication process is 0.03 seconds, the face recognition process is 6.3885 seconds and the verification of the face recognition is 0.1970 seconds. The access control system can still work properly after three days without being switched off. The results of security testing showed that the capabilities spoofing detection has 100% overcome the photo attack.
Cao, Yetong, Zhang, Qian, Li, Fan, Yang, Song, Wang, Yu.
2020.
PPGPass: Nonintrusive and Secure Mobile Two-Factor Authentication via Wearables. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1917—1926.
{Mobile devices are promising to apply two-factor authentication in order to improve system security and enhance user privacy-preserving. Existing solutions usually have certain limits of requiring some form of user effort, which might seriously affect user experience and delay authentication time. In this paper, we propose PPGPass, a novel mobile two-factor authentication system, which leverages Photoplethysmography (PPG) sensors in wrist-worn wearables to extract individual characteristics of PPG signals. In order to realize both nonintrusive and secure, we design a two-stage algorithm to separate clean heartbeat signals from PPG signals contaminated by motion artifacts, which allows verifying users without intentionally staying still during the process of authentication. In addition, to deal with non-cancelable issues when biometrics are compromised, we design a repeatable and non-invertible method to generate cancelable feature templates as alternative credentials, which enables to defense against man-in-the-middle attacks and replay attacks. To the best of our knowledge, PPGPass is the first nonintrusive and secure mobile two-factor authentication based on PPG sensors in wearables. We build a prototype of PPGPass and conduct the system with comprehensive experiments involving multiple participants. PPGPass can achieve an average F1 score of 95.3%, which confirms its high effectiveness, security, and usability}.
AlQahtani, Ali Abdullah S, Alamleh, Hosam, Gourd, Jean, Alnuhait, Hend.
2020.
TS2FA: Trilateration System Two Factor Authentication. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1—4.
Two-factor authentication (2FA) systems implement by verifying at least two factors. A factor is something a user knows (password, or phrase), something a user possesses (smart card, or smartphone), something a user is (fingerprint, or iris), something a user does (keystroke), or somewhere a user is (location). In the existing 2FA system, a user is required to act in order to implement the second layer of authentication which is not very user-friendly. Smart devices (phones, laptops, tablets, etc.) can receive signals from different radio frequency technologies within range. As these devices move among networks (Wi-Fi access points, cellphone towers, etc.), they receive broadcast messages, some of which can be used to collect information. This information can be utilized in a variety of ways, such as establishing a connection, sharing information, locating devices, and, most appropriately, identifying users in range. The principal benefit of broadcast messages is that the devices can read and process the embedded information without being connected to the broadcaster. Moreover, the broadcast messages can be received only within range of the wireless access point sending the broadcast, thus inherently limiting access to those devices in close physical proximity and facilitating many applications dependent on that proximity. In the proposed research, a new factor is used - something that is in the user's environment with minimal user involvement. Data from these broadcast messages is utilized to implement a 2FA scheme by determining whether two devices are proximate or not to ensure that they belong to the same user.