Chen, Lei.
2021.
Layered Security Multicast Algorithm based on Security Energy Efficiency Maximization in SCMA Networks. 2021 7th International Conference on Computer and Communications (ICCC). :2033–2037.
This paper studies the hierarchical secure multicast algorithm in sparse code multiple access (SCMA) networks, its network security capacity is no longer limited by the users with the worst channel quality in multicast group. Firstly, we propose a network security energy efficiency (SEE) maximization problem. Secondly, in order to reduce the computational complexity, we propose a suboptimal algorithm (SA), which separates the codebook assignment with artificial noise from the power allocation with artificial noise. To further decrease the complexity of Lagrange method, a power allocation algorithm with increased fixed power is introduced. Finally, simulation results show that the network performance of the proposed algorithm in SCMA network is significantly better than that in orthogonal frequency division multiple access (OFDMA) network.
Manoj, B. R., Sadeghi, Meysam, Larsson, Erik G..
2021.
Adversarial Attacks on Deep Learning Based Power Allocation in a Massive MIMO Network. ICC 2021 - IEEE International Conference on Communications. :1–6.
Deep learning (DL) is becoming popular as a new tool for many applications in wireless communication systems. However, for many classification tasks (e.g., modulation classification) it has been shown that DL-based wireless systems are susceptible to adversarial examples; adversarial examples are well-crafted malicious inputs to the neural network (NN) with the objective to cause erroneous outputs. In this paper, we extend this to regression problems and show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network. Specifically, we extend the fast gradient sign method (FGSM), momentum iterative FGSM, and projected gradient descent adversarial attacks in the context of power allocation in a maMIMO system. We benchmark the performance of these attacks and show that with a small perturbation in the input of the NN, the white-box attacks can result in infeasible solutions up to 86%. Furthermore, we investigate the performance of black-box attacks. All the evaluations conducted in this work are based on an open dataset and NN models, which are publicly available.