Biblio
Cryptojacking is the permissionless use of a target device to covertly mine cryptocurrencies. With cryptojacking attackers use malicious JavaScript codes to force web browsers into solving proof-of-work puzzles, thus making money by exploiting resources of the website visitors. To understand and counter such attacks, we systematically analyze the static, dynamic, and economic aspects of in-browser cryptojacking. For static analysis, we perform content-, currency-, and code-based categorization of cryptojacking samples to 1) measure their distribution across websites, 2) highlight their platform affinities, and 3) study their code complexities. We apply unsupervised learning to distinguish cryptojacking scripts from benign and other malicious JavaScript samples with 96.4% accuracy. For dynamic analysis, we analyze the effect of cryptojacking on critical system resources, such as CPU and battery usage. Additionally, we perform web browser fingerprinting to analyze the information exchange between the victim node and the dropzone cryptojacking server. We also build an analytical model to empirically evaluate the feasibility of cryptojacking as an alternative to online advertisement. Our results show a large negative profit and loss gap, indicating that the model is economically impractical. Finally, by leveraging insights from our analyses, we build countermeasures for in-browser cryptojacking that improve upon the existing remedies.
With the development of cloud computing, cloud workflow systems are widely accepted by more and more enterprises and individuals (namely tenants). There exists mass tenant workflow instances running in cloud workflow systems. How to implement the three-level (i.e., data, performance, execution ) isolation and privacy protection among these tenant workflow instances is challenging. To address this issue, this paper presents a novel cloud workflow model supporting multi-tenants with privacy protection. With the presented model, a framework of cloud workflow engine based on the extended jBPM4 is proposed by adopting layered management thought, virtualization technology and sandbox mechanism. By extending the jBPM4 (java Business Process Management) engine, the prototype system of the proposed cloud workflow engine is implemented and applied in the ceramic cloud service platform (denoted as CCSP). The application effect demonstrates that our proposal can be used to implement the three-level isolation and privacy protection between mass various tenant workflow instances in cloud workflow systems.
Java is a safe programming language by providing bytecode verification and enforcing memory protection. For instance, programmers cannot directly access the memory but have to use object references. Yet, the Java runtime provides an Unsafe API as a backdoor for the developers to access the low- level system code. Whereas the Unsafe API is designed to be used by the Java core library, a growing community of third-party libraries use it to achieve high performance. The Unsafe API is powerful, but dangerous, which leads to data corruption, resource leaks and difficult-to-diagnose JVM crash if used improperly. In this work, we study the Unsafe crash patterns and propose a memory checker to enforce memory safety, thus avoiding the JVM crash caused by the misuse of the Unsafe API at the bytecode level. We evaluate our technique on real crash cases from the openJDK bug system and real-world applications from AJDK. Our tool reduces the efforts from several days to a few minutes for the developers to diagnose the Unsafe related crashes. We also evaluate the runtime overhead of our tool on projects using intensive Unsafe operations, and the result shows that our tool causes a negligible perturbation to the execution of the applications.
Software security is a major concern of the developers who intend to deliver a reliable software. Although there is research that focuses on vulnerability prediction and discovery, there is still a need for building security-specific metrics to measure software security and vulnerability-proneness quantitatively. The existing methods are either based on software metrics (defined on the physical characteristics of code; e.g. complexity or lines of code) which are not security-specific or some generic patterns known as nano-patterns (Java method-level traceable patterns that characterize a Java method or function). Other methods predict vulnerabilities using text mining approaches or graph algorithms which perform poorly in cross-project validation and fail to be a generalized prediction model for any system. In this paper, we envision to construct an automated framework that will assist developers to assess the security level of their code and guide them towards developing secure code. To accomplish this goal, we aim to refine and redefine the existing nano-patterns and software metrics to make them more security-centric so that they can be used for measuring the software security level of a source code (either file or function) with higher accuracy. In this paper, we present our visionary approach through a series of three consecutive studies where we (1) will study the challenges of the current software metrics and nano-patterns in vulnerability prediction, (2) will redefine and characterize the nano-patterns and software metrics so that they can capture security-specific properties of code and measure the security level quantitatively, and finally (3) will implement an automated framework for the developers to automatically extract the values of all the patterns and metrics for the given code segment and then flag the estimated security level as a feedback based on our research results. We accomplished some preliminary experiments and presented the results which indicate that our vision can be practically implemented and will have valuable implications in the community of software security.
Java programming language is considered highly important due to its extensive use in the development of web, desktop as well as handheld devices applications. Implementing Java Coding standards on Java code has great importance as it creates consistency and as a result better development and maintenance. Finding bugs and standard's violations is important at an early stage of software development than at a later stage when the change becomes impossible or too expensive. In the paper, some tools and research work done on Coding Standard Analyzers is reviewed. These tools are categorized based on the type of rules they cheeked, namely: style, concurrency, exceptions, and quality, security, dependency and general methods of static code analysis. Finally, list of Java Coding Standards Enforcing Tools are analyzed against certain predefined parameters that are limited by the scope of research paper under study. This review will provide the basis for selecting a static code analysis tool that enforce International Java Coding Standards such as the Rule of Ten and the JPL Coding Standards. Such tools have great importance especially in the development of mission/safety critical system. This work can be very useful for developers in selecting a good tool for Java code analysis, according to their requirements.
The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.
The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.
The Java platform and its third-party libraries provide useful features to facilitate secure coding. However, misusing them can cost developers time and effort, as well as introduce security vulnerabilities in software. We conducted an empirical study on StackOverflow posts, aiming to understand developers' concerns on Java secure coding, their programming obstacles, and insecure coding practices. We observed a wide adoption of the authentication and authorization features provided by Spring Security - a third-party framework designed to secure enterprise applications. We found that programming challenges are usually related to APIs or libraries, including the complicated cross-language data handling of cryptography APIs, and the complex Java-based or XML-based approaches to configure Spring Security. In addition, we reported multiple security vulnerabilities in the suggested code of accepted answers on the StackOverflow forum. The vulnerabilities included disabling the default protection against Cross-Site Request Forgery (CSRF) attacks, breaking SSL/TLS security through bypassing certificate validation, and using insecure cryptographic hash functions. Our findings reveal the insufficiency of secure coding assistance and documentation, as well as the huge gap between security theory and coding practices.
With so much our daily lives relying on digital devices like personal computers and cell phones, there is a growing demand for code that not only functions properly, but is secure and keeps user data safe. However, ensuring this is not such an easy task, and many developers do not have the required skills or resources to ensure their code is secure. Many code analysis tools have been written to find vulnerabilities in newly developed code, but this technology tends to produce many false positives, and is still not able to identify all of the problems. Other methods of finding software vulnerabilities automatically are required. This proof-of-concept study applied natural language processing on Java byte code to locate SQL injection vulnerabilities in a Java program. Preliminary findings show that, due to the high number of terms in the dataset, using singular decision trees will not produce a suitable model for locating SQL injection vulnerabilities, while random forest structures proved more promising. Still, further work is needed to determine the best classification tool.
Streaming APIs are becoming more pervasive in mainstream Object-Oriented programming languages. For example, the Stream API introduced in Java 8 allows for functional-like, MapReduce-style operations in processing both finite and infinite data structures. However, using this API efficiently involves subtle considerations like determining when it is best for stream operations to run in parallel, when running operations in parallel can be less efficient, and when it is safe to run in parallel due to possible lambda expression side-effects. In this paper, we present an automated refactoring approach that assists developers in writing efficient stream code in a semantics-preserving fashion. The approach, based on a novel data ordering and typestate analysis, consists of preconditions for automatically determining when it is safe and possibly advantageous to convert sequential streams to parallel and unorder or de-parallelize already parallel streams. The approach was implemented as a plug-in to the Eclipse IDE, uses the WALA and SAFE analysis frameworks, and was evaluated on 11 Java projects consisting of ?642K lines of code. We found that 57 of 157 candidate streams (36.31%) were refactorable, and an average speedup of 3.49 on performance tests was observed. The results indicate that the approach is useful in optimizing stream code to their full potential.
Web application technologies are growing rapidly with continuous innovation and improvements. This paper focuses on the popular Spring Boot [1] java-based framework for building web and enterprise applications and how it provides the flexibility for service-oriented architecture (SOA). One challenge with any Spring-based applications is its level of complexity with configurations. Spring Boot makes it easy to create and deploy stand-alone, production-grade Spring applications with very little Spring configuration. Example, if we consider Spring Model-View-Controller (MVC) framework [2], we need to configure dispatcher servlet, web jars, a view resolver, and component scan among other things. To solve this, Spring Boot provides several Auto Configuration options to setup the application with any needed dependencies. Another challenge is to identify the framework dependencies and associated library versions required to develop a web application. Spring Boot offers simpler dependency management by using a comprehensive, but flexible, framework and the associated libraries in one single dependency, which provides all the Spring related technology that you need for starter projects as compared to CRUD web applications. This framework provides a range of additional features that are common across many projects such as embedded server, security, metrics, health checks, and externalized configuration. Web applications are generally packaged as war and deployed to a web server, but Spring Boot application can be packaged either as war or jar file, which allows to run the application without the need to install and/or configure on the application server. In this paper, we discuss how Atmospheric Radiation Measurement (ARM) Data Center (ADC) at Oak Ridge National Laboratory, is using Spring Boot to create a SOA based REST [4] service API, that bridges the gap between frontend user interfaces and backend database. Using this REST service API, ARM scientists are now able to submit reports via a user form or a command line interface, which captures the same data quality or other important information about ARM data.
Software agents represent an assured computing paradigm that tends to emerge to be an elegant technology to solve present day problems. The eminent Scientific Community has proved us with the usage or implementation of software agent's usage approach that simplifies the proposed solution in various types to solve the traditional computing problems arise. The proof of the same is implemented in several applications that exist based on this area of technology where the software agents have maximum benefits but on the same hand absence of the suitable security mechanisms that endures for systems that are based on representation of barriers exists in the paradigm with respect to present day industry. As the application proposing present security mechanisms is not a trivial one as the agent based system builders or developers who are not often security experts as they subsequently do not count on the area of expertise. This paper presents a novel approach for protecting the infrastructure for solving the issues considered to be malicious host in mobile agent system by implementing a secure protocol to migrate agents from host to host relying in various elements based on the enhanced Trusted Platforms Modules (TPM) for processing data. We use enhanced extension to the Java Agent Development framework (JADE) in our proposed system and a migrating protocol is used to validate the proposed framework (AVASPA).
Parfait [1] is a static analysis tool originally developed to find implementation defects in C/C++ systems code. Parfait's focus is on proving both high precision (low false positives) as well as scaling to systems with millions of lines of code (typically requiring 10 minutes of analysis time per million lines). Parfait has since been extended to detect security vulnerabilities in applications code, supporting the Java EE and PL/SQL server stack. In this abstract we describe some of the challenges we encountered in this process including some of the differences seen between the applications code being analysed, our solutions that enable us to analyse a variety of applications, and a summary of the challenges that remain.
Deprecation is a language feature that allows API producers to mark a feature as obsolete. We aim to gain a deep understanding of the needs of API producers and consumers alike regarding deprecation. To that end, we investigate why API producers deprecate features, whether they remove deprecated features, how they expect consumers to react, and what prompts an API consumer to react to deprecation. To achieve this goal we conduct semi-structured interviews with 17 third-party Java API producers and survey 170 Java developers. We observe that the current deprecation mechanism in Java and the proposal to enhance it does not address all the needs of a developer. This leads us to propose and evaluate three further enhancements to the deprecation mechanism.
Today, maintaining the security of the web application is of great importance. Sites Intermediate Script (XSS) is a security flaw that can affect web applications. This error allows an attacker to add their own malicious code to HTML pages that are displayed to the user. Upon execution of the malicious code, the behavior of the system or website can be completely changed. The XSS security vulnerability is used by attackers to steal the resources of a web browser such as cookies, identity information, etc. by adding malicious Java Script code to the victim's web applications. Attackers can use this feature to force a malicious code worker into a Web browser of a user, since Web browsers support the execution of embedded commands on web pages to enable dynamic web pages. This work has been proposed as a technique to detect and prevent manipulation that may occur in web sites, and thus to prevent the attack of Site Intermediate Script (XSS) attacks. Ayrica has developed four different languages that detect XSS explanations with Asp.NET, PHP, PHP and Ruby languages, and the differences in the detection of XSS attacks in environments provided by different programming languages.
To add more functionality and enhance usability of web applications, JavaScript (JS) is frequently used. Even with many advantages and usefulness of JS, an annoying fact is that many recent cyberattacks such as drive-by-download attacks exploit vulnerability of JS codes. In general, malicious JS codes are not easy to detect, because they sneakily exploit vulnerabilities of browsers and plugin software, and attack visitors of a web site unknowingly. To protect users from such threads, the development of an accurate detection system for malicious JS is soliciting. Conventional approaches often employ signature and heuristic-based methods, which are prone to suffer from zero-day attacks, i.e., causing many false negatives and/or false positives. For this problem, this paper adopts a machine-learning approach to feature learning called Doc2Vec, which is a neural network model that can learn context information of texts. The extracted features are given to a classifier model (e.g., SVM and neural networks) and it judges the maliciousness of a JS code. In the performance evaluation, we use the D3M Dataset (Drive-by-Download Data by Marionette) for malicious JS codes and JSUPACK for benign ones for both training and test purposes. We then compare the performance to other feature learning methods. Our experimental results show that the proposed Doc2Vec features provide better accuracy and fast classification in malicious JS code detection compared to conventional approaches.
In this paper, we examine the recent trend to- wards in-browser mining of cryptocurrencies; in particular, the mining of Monero through Coinhive and similar code- bases. In this model, a user visiting a website will download a JavaScript code that executes client-side in her browser, mines a cryptocurrency - typically without her consent or knowledge - and pays out the seigniorage to the website. Websites may consciously employ this as an alternative or to supplement advertisement revenue, may offer premium content in exchange for mining, or may be unwittingly serving the code as a result of a breach (in which case the seigniorage is collected by the attacker). The cryptocurrency Monero is preferred seemingly for its unfriendliness to large-scale ASIC mining that would drive browser-based efforts out of the market, as well as for its purported privacy features. In this paper, we survey this landscape, conduct some measurements to establish its prevalence and profitability, outline an ethical framework for considering whether it should be classified as an attack or business opportunity, and make suggestions for the detection, mitigation and/or prevention of browser-based mining for non- consenting users.