Biblio
Early detection of conflict potentials around the community is vital for the Central Java Regional Police Department, especially in the Analyst section of the Directorate of Security Intelligence. Performance in carrying out early detection will affect the peace and security of the community. The performance of potential conflict detection activities can be improved using an integrated early detection information system by shortening the time after observation, report preparation, information processing, and analysis. Developed using Unified Process as a software life cycle, the obtained result shows the time-based performance variables of the officers are significantly improved, including observation time, report production, data finding, and document formatting.
Java locking is an essential functionality and tool in the development of applications and systems, and this is mainly because several modules may run in a synchronized way inside an application and these modules need a good coordination manner in order for them to run properly and in order to make the whole application or system stable and normal. As such, this paper focuses on comparing various Java locking mechanisms in order to achieve a better understanding of how these locks work and how to conduct a proper locking mechanism. The comparison of locks is made according to CPU usage, memory consumption, and ease of implementation indicators, with the aim of providing guidance to developers in choosing locks for different scenarios. For example, if the Pessimistic Locks are used in any program execution environment, i.e., whenever a thread obtains resources, it needs to obtain the lock first, which can ensure a certain level of data security. However, it will bring great CPU overhead and reduce efficiency. Also, different locks have different memory consumption, and developers are sometimes faced with the need to choose locks rationally with limited memory, or they will cause a series of memory problems. In particular, the comparison of Java locks is able to lead to a systematic classification of these locks and can help improve the understanding of the taxonomy logic of the Java locks.
Static analyzers have become increasingly popular both as developer tools and as subjects of empirical studies. Whereas static analysis tools exist for disparate programming languages, the bulk of the empirical research has focused on the popular Java programming language. In this paper, we investigate to what extent some known results about using static analyzers for Java change when considering C\#-another popular object-oriented language. To this end, we combine two replications of previous Java studies. First, we study which static analysis tools are most widely used among C\# developers, and which warnings are more commonly reported by these tools on open-source C\# projects. Second, we develop and empirically evaluate EagleRepair: a technique to automatically fix code in response to static analysis warnings; this is a replication of our previous work for Java [20]. Our replication indicates, among other things, that 1) static code analysis is fairly popular among C\# developers too; 2) Re-Sharper is the most widely used static analyzer for C\#; 3) several static analysis rules are commonly violated in both Java and C\# projects; 4) automatically generating fixes to static code analysis warnings with good precision is feasible in C\#. The EagleRepair tool developed for this research is available as open source.
The Android application market will conduct various security analysis on each application to predict its potential harm before put it online. Since almost all the static analysis tools can only detect malicious behaviors in the Java layer, more and more malwares try to avoid static analysis by taking the malicious codes to the Native layer. To provide a solution for the above situation, there's a new research aspect proposed in this paper and defined as Inter-language Static Analysis. As all the involved technologies are introduced, the current research results of them will be captured in this paper, such as static analysis in Java layer, binary analysis in Native layer, Java-Native penetration technology, etc.
Networked embedded systems (which include IoT, CPS, etc.) are vulnerable. Even though we know how to secure these systems, their heterogeneity and the heterogeneity of security policies remains a major problem. Designers face ever more sophisticated attacks while they are not always security experts and have to get a trade-off on design criteria. We propose in this paper the CLASA architecture (Cross-Layer Agent Security Architecture), a generic, integrated, inter-operable, decentralized and modular architecture which relies on cross-layering.