Visible to the public Biblio

Found 107 results

Filters: Keyword is Java  [Clear All Filters]
2021-08-17
Jaiswal, Ayshwarya, Dwivedi, Vijay Kumar, Yadav, Om Prakash.  2020.  Big Data and its Analyzing Tools : A Perspective. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :560–565.
Data are generated and stored in databases at a very high speed and hence it need to be handled and analyzed properly. Nowadays industries are extensively using Hadoop and Spark to analyze the datasets. Both the frameworks are used for increasing processing speeds in computing huge complex datasets. Many researchers are comparing both of them. Now, the big questions arising are, Is Spark a substitute for Hadoop? Is hadoop going to be replaced by spark in mere future?. Spark is “built on top of” Hadoop and it extends the model to deploy more types of computations which incorporates Stream Processing and Interactive Queries. No doubt, Spark's execution speed is much faster than Hadoop, but talking in terms of fault tolerance, hadoop is slightly more fault tolerant than spark. In this article comparison of various bigdata analytics tools are done and Hadoop and Spark are discussed in detail. This article further gives an overview of bigdata, spark and hadoop issues. In this survey paper, the approaches to resolve the issues of spark and hadoop are discussed elaborately.
2021-06-24
Saletta, Martina, Ferretti, Claudio.  2020.  A Neural Embedding for Source Code: Security Analysis and CWE Lists. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :523—530.
In this paper, we design a technique for mapping the source code into a vector space and we show its application in the recognition of security weaknesses. By applying ideas commonly used in Natural Language Processing, we train a model for producing an embedding of programs starting from their Abstract Syntax Trees. We then show how such embedding is able to infer clusters roughly separating different classes of software weaknesses. Even if the training of the embedding is unsupervised and made on a generic Java dataset, we show that the model can be used for supervised learning of specific classes of vulnerabilities, helping to capture some features distinguishing them in code. Finally, we discuss how our model performs over the different types of vulnerabilities categorized by the CWE initiative.
2021-06-01
Abhinav, P Y, Bhat, Avakash, Joseph, Christina Terese, Chandrasekaran, K.  2020.  Concurrency Analysis of Go and Java. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—6.
There has been tremendous progress in the past few decades towards developing applications that receive data and send data concurrently. In such a day and age, there is a requirement for a language that can perform optimally in such environments. Currently, the two most popular languages in that respect are Go and Java. In this paper, we look to analyze the concurrency features of Go and Java through a complete programming language performance analysis, looking at their compile time, run time, binary sizes and the language's unique concurrency features. This is done by experimenting with the two languages using the matrix multiplication and PageRank algorithms. To the extent of our knowledge, this is the first work which used PageRank algorithm to analyse concurrency. Considering the results of this paper, application developers and researchers can hypothesize on an appropriate language to use for their concurrent programming activity.Results of this paper show that Go performs better for fewer number of computation but is soon taken over by Java as the number of computations drastically increase. This trend is shown to be the opposite when thread creation and management is considered where Java performs better with fewer computation but Go does better later on. Regarding concurrency features both Java with its Executor Service library and Go had their own advantages that made them better for specific applications.
2021-04-29
Fischer, A., Janneck, J., Kussmaul, J., Krätzschmar, N., Kerschbaum, F., Bodden, E..  2020.  PASAPTO: Policy-aware Security and Performance Trade-off Analysis–Computation on Encrypted Data with Restricted Leakage. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :230—245.

This work considers the trade-off between security and performance when revealing partial information about encrypted data computed on. The focus of our work is on information revealed through control flow side-channels when executing programs on encrypted data. We use quantitative information flow to measure security, running time to measure performance and program transformation techniques to alter the trade-off between the two. Combined with information flow policies, we perform a policy-aware security and performance trade-off (PASAPTO) analysis. We formalize the problem of PASAPTO analysis as an optimization problem, prove the NP-hardness of the corresponding decision problem and present two algorithms solving it heuristically. We implemented our algorithms and combined them with the Dataflow Authentication (DFAuth) approach for outsourcing sensitive computations. Our DFAuth Trade-off Analyzer (DFATA) takes Java Bytecode operating on plaintext data and an associated information flow policy as input. It outputs semantically equivalent program variants operating on encrypted data which are policy-compliant and approximately Pareto-optimal with respect to leakage and performance. We evaluated DFATA in a commercial cloud environment using Java programs, e.g., a decision tree program performing machine learning on medical data. The decision tree variant with the worst performance is 357% slower than the fastest variant. Leakage varies between 0% and 17% of the input.

Engram, S., Ligatti, J..  2020.  Through the Lens of Code Granularity: A Unified Approach to Security Policy Enforcement. 2020 IEEE Conference on Application, Information and Network Security (AINS). :41—46.

A common way to characterize security enforcement mechanisms is based on the time at which they operate. Mechanisms operating before a program's execution are static mechanisms, and mechanisms operating during a program's execution are dynamic mechanisms. This paper introduces a different perspective and classifies mechanisms based on the granularity of program code that they monitor. Classifying mechanisms in this way provides a unified view of security mechanisms and shows that all security mechanisms can be encoded as dynamic mechanisms that operate at different levels of program code granularity. The practicality of the approach is demonstrated through a prototype implementation of a framework for enforcing security policies at various levels of code granularity on Java bytecode applications.

2021-03-15
Perkins, J., Eikenberry, J., Coglio, A., Rinard, M..  2020.  Comprehensive Java Metadata Tracking for Attack Detection and Repair. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :39—51.

We present ClearTrack, a system that tracks meta-data for each primitive value in Java programs to detect and nullify a range of vulnerabilities such as integer overflow/underflow and SQL/command injection vulnerabilities. Contributions include new techniques for eliminating false positives associated with benign integer overflows and underflows, new metadata-aware techniques for detecting and nullifying SQL/command command injection attacks, and results from an independent evaluation team. These results show that 1) ClearTrack operates successfully on Java programs comprising hundreds of thousands of lines of code (including instrumented jar files and Java system libraries, the majority of the applications comprise over 3 million lines of code), 2) because of computations such as cryptography and hash table calculations, these applications perform millions of benign integer overflows and underflows, and 3) ClearTrack successfully detects and nullifies all tested integer overflow and underflow and SQL/command injection vulnerabilities in the benchmark applications.

Piessens, F..  2020.  Security across abstraction layers: old and new examples. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :271–279.
A common technique for building ICT systems is to build them as successive layers of bstraction: for instance, the Instruction Set Architecture (ISA) is an abstraction of the hardware, and compilers or interpreters build higher level abstractions on top of the ISA.The functionality of an ICT application can often be understood by considering only a single level of abstraction. For instance the source code of the application defines the functionality using the level of abstraction of the source programming language. Functionality can be well understood by just studying this source code.Many important security issues in ICT system however are cross-layer issues: they can not be understood by considering the system at a single level of abstraction, but they require understanding how multiple levels of abstraction are implemented. Attacks may rely on, or exploit, implementation details of one or more layers below the source code level of abstraction.The purpose of this paper is to illustrate this cross-layer nature of security by discussing old and new examples of cross-layer security issues, and by providing a classification of these issues.
Azahari, A. M., Ahmad, A., Rahayu, S. B., Halip, M. H. Mohamed.  2020.  CheckMyCode: Assignment Submission System with Cloud-Based Java Compiler. 2020 8th International Conference on Information Technology and Multimedia (ICIMU). :343–347.
Learning programming language of Java is a basic part of the Computer Science and Engineering curriculum. Specific Java compiler is a requirement for writing and convert the writing code to executable format. However, some local installed Java compiler is suffering from compatibility, portability and storage space issues. These issues sometimes affect student-learning interest and slow down the learning process. This paper is directed toward the solution for such problems, which offers a new programming assignment submission system with cloud-based Java compiler and is known as CheckMyCode. Leveraging cloud-computing technology in terms of its availability, prevalence and affordability, CheckMyCode implements Java cloud-based programming compiler as a part of the assignment management system. CheckMyCode system is a cloud-based system that allows both main users, which are a lecturer and student to access the system via a browser on PC or smart devices. Modules of submission assignment system with cloud compiler allow lecturer and student to manage Java programming task in one platform. A framework, system module, main user and feature of CheckMyCode are presented. Also, taking into account are the future study/direction and new enhancement of CheckMyCode.
2021-03-09
Klym, H., Vasylchyshyn, I..  2020.  Biometric System of Access to Information Resources. 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE). :1–4.

The biometric system of access to information resources has been developed. The software and hardware complex are designed to protect information resources and personal data from unauthorized access using the principle of user authentication by fingerprints. In the developed complex, the traditional input of login and password was replaced by applying a finger to the fingerprint scanner. The system automatically recognizes the fingerprint and provides access to the information resource, provides encryption of personal data and automation of the authorization process on the web resource. The web application was implemented using the Bootstrap framework, the 000webhost web server, the phpMyAdmin database server, the PHP scripting language, the HTML hypertext markup language, along with cascading style sheets and embedded scripts (JavaScript), which created a full-fledged web-site and Google Chrome extension with the ability to integrate it into other systems. The structural schematic diagram was performed. The design of the device is offered. The algorithm of the program operation and the program of the device operation in the C language are developed.

2021-01-25
Swetha, K., Kalyan, S. P., Pavan, V., Roshini, A..  2020.  A Modified Tiny Asymmetric Encryption for Secure Ftp to Network. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1176–1180.
The target of this venture is to give the protected correspondence among the associated frameworks in the system. It gives the vital validation to the record moving in the system transmission. It comprises of 3 modules in particular encryption and unscrambling module, secret key verification to the information that needs to transmit through system. In this system, File Transfer Protocol can be used to execute Server-client innovation and the document can be scrambled and unscrambled by sending the end client through attachment programming of the end client.
2021-01-20
Mavroudis, V., Svenda, P..  2020.  JCMathLib: Wrapper Cryptographic Library for Transparent and Certifiable JavaCard Applets. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :89—96.

The JavaCard multi-application platform is now deployed to over twenty billion smartcards, used in various applications ranging from banking payments and authentication tokens to SIM cards and electronic documents. In most of those use cases, access to various cryptographic primitives is required. The standard JavaCard API provides a basic level of access to such functionality (e.g., RSA encryption) but does not expose low-level cryptographic primitives (e.g., elliptic curve operations) and essential data types (e.g., Integers). Developers can access such features only through proprietary, manufacturer-specific APIs. Unfortunately, such APIs significantly reduce the interoperability and certification transparency of the software produced as they require non-disclosure agreements (NDA) that prohibit public sharing of the applet's source code.We introduce JCMathLib, an open library that provides an intermediate layer realizing essential data types and low-level cryptographic primitives from high-level operations. To achieve this, we introduce a series of optimization techniques for resource-constrained platforms that make optimal use of the underlying hardware, while having a small memory footprint. To the best of our knowledge, it is the first generic library for low-level cryptographic operations in JavaCards that does not rely on a proprietary API.Without any disclosure limitations, JCMathLib has the potential to increase transparency by enabling open code sharing, release of research prototypes, and public code audits. Moreover, JCMathLib can help resolve the conflict between strict open-source licenses such as GPL and proprietary APIs available only under an NDA. This is of particular importance due to the introduction of JavaCard API v3.1, which targets specifically IoT devices, where open-source development might be more common than in the relatively closed world of government-issued electronic documents.

Hazhirpasand, M., Ghafari, M., Nierstrasz, O..  2020.  CryptoExplorer: An Interactive Web Platform Supporting Secure Use of Cryptography APIs. 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). :632—636.

Research has shown that cryptographic APIs are hard to use. Consequently, developers resort to using code examples available in online information sources that are often not secure. We have developed a web platform, named CryptoExplorer, stocked with numerous real-world secure and insecure examples that developers can explore to learn how to use cryptographic APIs properly. This platform currently provides 3 263 secure uses, and 5 897 insecure uses of Java Cryptography Architecture mined from 2 324 Java projects on GitHub. A preliminary study shows that CryptoExplorer provides developers with secure crypto API use examples instantly, developers can save time compared to searching on the internet for such examples, and they learn to avoid using certain algorithms in APIs by studying misused API examples. We have a pipeline to regularly mine more projects, and, on request, we offer our dataset to researchers.

2021-01-15
Park, W..  2020.  A Study on Analytical Visualization of Deep Web. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :81—83.

Nowadays, there is a flood of data such as naked body photos and child pornography, which is making people bloodless. In addition, people also distribute drugs through unknown dark channels. In particular, most transactions are being made through the Deep Web, the dark path. “Deep Web refers to an encrypted network that is not detected on search engine like Google etc. Users must use Tor to visit sites on the dark web” [4]. In other words, the Dark Web uses Tor's encryption client. Therefore, users can visit multiple sites on the dark Web, but not know the initiator of the site. In this paper, we propose the key idea based on the current status of such crimes and a crime information visual system for Deep Web has been developed. The status of deep web is analyzed and data is visualized using Java. It is expected that the program will help more efficient management and monitoring of crime in unknown web such as deep web, torrent etc.

2020-12-11
Kumar, S., Vasthimal, D. K..  2019.  Raw Cardinality Information Discovery for Big Datasets. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :200—205.
Real-time discovery of all different types of unique attributes within unstructured data is a challenging problem to solve when dealing with multiple petabytes of unstructured data volume everyday. Popular discovery solutions such as the creation of offline jobs to uniquely identify attributes or running aggregation queries on raw data sets limits real time discovery use-cases and often results into poor resource utilization. The discovery information must be treated as a parallel problem to just storing raw data sets efficiently onto back-end big data systems. Solving the discovery problem by creating a parallel discovery data store infrastructure has multiple benefits as it allows such to channel the actual search queries against the raw data set in much more funneled manner instead of being widespread across the entire data sets. Such focused search queries and data separation are far more performant and requires less compute and memory footprint.
2020-11-30
Stokes, J. W., Agrawal, R., McDonald, G., Hausknecht, M..  2019.  ScriptNet: Neural Static Analysis for Malicious JavaScript Detection. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–8.
Malicious scripts are an important computer infection threat vector for computer users. For internet-scale processing, static analysis offers substantial computing efficiencies. We propose the ScriptNet system for neural malicious JavaScript detection which is based on static analysis. We also propose a novel deep learning model, Pre-Informant Learning (PIL), which processes Javascript files as byte sequences. Lower layers capture the sequential nature of these byte sequences while higher layers classify the resulting embedding as malicious or benign. Unlike previously proposed solutions, our model variants are trained in an end-to-end fashion allowing discriminative training even for the sequential processing layers. Evaluating this model on a large corpus of 212,408 JavaScript files indicates that the best performing PIL model offers a 98.10% true positive rate (TPR) for the first 60K byte subsequences and 81.66% for the full-length files, at a false positive rate (FPR) of 0.50%. Both models significantly outperform several baseline models. The best performing PIL model can successfully detect 92.02% of unknown malware samples in a hindsight experiment where the true labels of the malicious JavaScript files were not known when the model was trained.
2020-11-09
Fischer, T., Lesjak, C., Pirker, D., Steger, C..  2019.  RPC Based Framework for Partitioning IoT Security Software for Trusted Execution Environments. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0430–0435.
Partitioning security components of IoT devices to enable the use of Trusted Execution Environments adds resilience against side-channel attacks. Devices are hardened against extraction of sensitive information, but at the same time additional effort must be spent for the integration of the TEE and software partitioning. To perform partitioning, the developer typically inserts Remote Procedure Calls into the software. Existing RPC-based solutions require the developer to write Interface Definition Language files to generate RPC stubs. In this work, we present an RPC-based framework that supports software partitioning via a graphical user interface. The framework extracts required information about the interfaces from source-code header files to eliminate the need for IDL files. With this approach the TEE integration time is reduced and reuse of existing libraries is supported. We evaluate a Proof-of-Concept by partitioning a TLS library for IoT devices and compare our approach to other RPC-based solutions.
2020-11-04
Sultana, K. Z., Williams, B. J., Bosu, A..  2018.  A Comparison of Nano-Patterns vs. Software Metrics in Vulnerability Prediction. 2018 25th Asia-Pacific Software Engineering Conference (APSEC). :355—364.

Context: Software security is an imperative aspect of software quality. Early detection of vulnerable code during development can better ensure the security of the codebase and minimize testing efforts. Although traditional software metrics are used for early detection of vulnerabilities, they do not clearly address the granularity level of the issue to precisely pinpoint vulnerabilities. The goal of this study is to employ method-level traceable patterns (nano-patterns) in vulnerability prediction and empirically compare their performance with traditional software metrics. The concept of nano-patterns is similar to design patterns, but these constructs can be automatically recognized and extracted from source code. If nano-patterns can better predict vulnerable methods compared to software metrics, they can be used in developing vulnerability prediction models with better accuracy. Aims: This study explores the performance of method-level patterns in vulnerability prediction. We also compare them with method-level software metrics. Method: We studied vulnerabilities reported for two major releases of Apache Tomcat (6 and 7), Apache CXF, and two stand-alone Java web applications. We used three machine learning techniques to predict vulnerabilities using nano-patterns as features. We applied the same techniques using method-level software metrics as features and compared their performance with nano-patterns. Results: We found that nano-patterns show lower false negative rates for classifying vulnerable methods (for Tomcat 6, 21% vs 34.7%) and therefore, have higher recall in predicting vulnerable code than the software metrics used. On the other hand, software metrics show higher precision than nano-patterns (79.4% vs 76.6%). Conclusion: In summary, we suggest developers use nano-patterns as features for vulnerability prediction to augment existing approaches as these code constructs outperform standard metrics in terms of prediction recall.

2020-11-02
Chong, T., Anu, V., Sultana, K. Z..  2019.  Using Software Metrics for Predicting Vulnerable Code-Components: A Study on Java and Python Open Source Projects. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :98–103.

Software vulnerabilities often remain hidden until an attacker exploits the weak/insecure code. Therefore, testing the software from a vulnerability discovery perspective becomes challenging for developers if they do not inspect their code thoroughly (which is time-consuming). We propose that vulnerability prediction using certain software metrics can support the testing process by identifying vulnerable code-components (e.g., functions, classes, etc.). Once a code-component is predicted as vulnerable, the developers can focus their testing efforts on it, thereby avoiding the time/effort required for testing the entire application. The current paper presents a study that compares how software metrics perform as vulnerability predictors for software projects developed in two different languages (Java vs Python). The goal of this research is to analyze the vulnerability prediction performance of software metrics for different programming languages. We designed and conducted experiments on security vulnerabilities reported for three Java projects (Apache Tomcat 6, Tomcat 7, Apache CXF) and two Python projects (Django and Keystone). In this paper, we focus on a specific type of code component: Functions. We apply Machine Learning models for predicting vulnerable functions. Overall results show that software metrics-based vulnerability prediction is more useful for Java projects than Python projects (i.e., software metrics when used as features were able to predict Java vulnerable functions with a higher recall and precision compared to Python vulnerable functions prediction).

Ermakov, Anton D., Prokopenko, Svetlana A., Yevtushenko, Nina V..  2018.  Security Checking Experiments with Mobile Services. 2018 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). :139—141.
In this paper, we continue to investigate the problem of software security. The problem is to check if software under test has some vulnerabilities such as exceeding of admissible values of input/output parameters or internal variables or can reach states where the software (service) behavior is not defined. We illustrate by experiments that the well-known verifier Java Path Finder (JPF) can be utilized for this purpose. We apply JPF-mobile to Android applications and results of security checking experiments are presented.
2020-09-28
Rodriguez, German, Torres, Jenny, Flores, Pamela, Benavides, Eduardo, Nuñez-Agurto, Daniel.  2019.  XSStudent: Proposal to Avoid Cross-Site Scripting (XSS) Attacks in Universities. 2019 3rd Cyber Security in Networking Conference (CSNet). :142–149.
QR codes are the means to offer more direct and instant access to information. However, QR codes have shown their deficiency, being a very powerful attack vector, for example, to execute phishing attacks. In this study, we have proposed a solution that allows controlling access to the information offered by QR codes. Through a scanner designed in APP Inventor which has been called XSStudent, a system has been built that analyzes the URLs obtained and compares them with a previously trained system. This study was executed by means of a controlled attack to the users of the university who through a flyer with a QR code and a fictional link accessed an infected page with JavaScript code that allowed a successful cross-site scripting attack. The results indicate that 100% of the users are vulnerable to this type of attacks, so also, with our proposal, an attack executed in the universities using the Beef software would be totally blocked.
Piskachev, Goran, Nguyen Quang Do, Lisa, Johnson, Oshando, Bodden, Eric.  2019.  SWAN\_ASSIST: Semi-Automated Detection of Code-Specific, Security-Relevant Methods. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1094–1097.
To detect specific types of bugs and vulnerabilities, static analysis tools must be correctly configured with security-relevant methods (SRM), e.g., sources, sinks, sanitizers and authentication methods-usually a very labour-intensive and error-prone process. This work presents the semi-automated tool SWAN\_ASSIST, which aids the configuration with an IntelliJ plugin based on active machine learning. It integrates our novel automated machine-learning approach SWAN, which identifies and classifies Java SRM. SWAN\_ASSIST further integrates user feedback through iterative learning. SWAN\_ASSIST aids developers by asking them to classify at each point in time exactly those methods whose classification best impact the classification result. Our experiments show that SWAN\_ASSIST classifies SRM with a high precision, and requires a relatively low effort from the user. A video demo of SWAN\_ASSIST can be found at https://youtu.be/fSyD3V6EQOY. The source code is available at https://github.com/secure-software-engineering/swan.
2020-08-28
Khomytska, Iryna, Teslyuk, Vasyl.  2019.  Mathematical Methods Applied for Authorship Attribution on the Phonological Level. 2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT). 3:7—11.

The proposed combination of statistical methods has proved efficient for authorship attribution. The complex analysis method based on the proposed combination of statistical methods has made it possible to minimize the number of phoneme groups by which the authorial differentiation of texts has been done.

Khomytska, Iryna, Teslyuk, Vasyl.  2019.  The Software for Authorship and Style Attribution. 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). :1—4.

A new program has been developed for style and authorship attribution. Differentiation of styles by transcription symbols has proved to be efficient The novel approach involves a combination of two ways of transforming texts into their transcription variants. The java programming language makes it possible to improve efficiency of style and authorship attribution.

2020-07-16
Roth, Thomas, Burns, Martin.  2018.  A gateway to easily integrate simulation platforms for co-simulation of cyber-physical systems. 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—6.

Cyber-physical systems (CPS) research leverages the expertise of researchers from multiple domains to engineer complex systems of interacting physical and computational components. An approach called co-simulation is often used in CPS conceptual design to integrate the specialized tools and simulators from each of these domains into a joint simulation for the evaluation of design decisions. Many co-simulation platforms are being developed to expedite CPS conceptualization and realization, but most use intrusive modeling and communication libraries that require researchers to either abandon their existing models or spend considerable effort to integrate them into the platform. A significant number of these co-simulation platforms use the High Level Architecture (HLA) standard that provides a rich set of services to facilitate distributed simulation. This paper introduces a simple gateway that can be readily implemented without co-simulation expertise to adapt existing models and research infrastructure for use in HLA. An open-source implementation of the gateway has been developed for the National Institute of Standards and Technology (NIST) co-simulation platform called the Universal CPS Environment for Federation (UCEF).

2020-07-13
Abur, Maria M., Junaidu, Sahalu B., Obiniyi, Afolayan A., Abdullahi, Saleh E..  2019.  Privacy Token Technique for Protecting User’s Attributes in a Federated Identity Management System for the Cloud Environment. 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf). :1–10.
Once an individual employs the use of the Internet for accessing information; carrying out transactions and sharing of data on the Cloud, they are connected to diverse computers on the network. As such, security of such transmitted data is most threatened and then potentially creating privacy risks of users on the federated identity management system in the Cloud. Usually, User's attributes or Personal Identifiable Information (PII) are needed to access Services on the Cloud from different Service Providers (SPs). Sometime these SPs may by themselves violate user's privacy by the reuse of user's attributes offered them for the release of services to the users without their consent and then carrying out activities that may appear malicious and then causing damage to the users. Similarly, it should be noted that sensitive user's attributes (e.g. first name, email, address and the likes) are received in their original form by needed SPs in plaintext. As a result of these problems, user's privacy is being violated. Since these SPs may reuse them or connive with other SPs to expose a user's identity in the cloud environment. This research is motivated to provide a protective and novel approach that shall no longer release original user's attributes to SPs but pseudonyms that shall prevent the SPs from violating user's privacy through connivance to expose the user's identity or other means. The paper introduces a conceptual framework for the proposed user's attributes privacy protection in a federated identity management system for the cloud. On the proposed system, the use of pseudonymous technique also called Privacy Token (PT) is employed. The pseudonymous technique ensures users' original attributes values are not sent directly to the SP but auto generated pseudo attributes values. The PT is composed of: Pseudo Attribute values, Timestamp and SPİD. These composition of the PT makes it difficult for the User's PII to be revealed and further preventing the SPs from being able to keep them or reuse them in the future without the user's consent for any purpose. Another important feature of the PT is its ability to forestall collusion among several collaborating service providers. This is due to the fact that each SP receives pseudo values that have no direct link to the identity of the user. The prototype was implemented with Java programming language and its performance tested on CloudAnalyst simulation.