Biblio
This Research to Practice Full Paper presents a new methodology in cybersecurity education. In the context of the cybersecurity profession, the `isolation problem' refers to the observed isolation of different knowledge units, as well as the isolation of technical and business perspectives. Due to limitations in existing cybersecurity education, professionals entering the field are often trapped in microscopic perspectives, and struggle to extend their findings to grasp the big picture in a target network scenario. Guided by a previous developed and published framework named “cross-layer situation knowledge reference model” (SKRM), which delivers comprehensive level big picture situation awareness, our new methodology targets at developing suites of teaching modules to address the above issues. The modules, featuring interactive hands-on labs that emulate real-world multiple-step attacks, will help students form a knowledge network instead of isolated conceptual knowledge units. Students will not just be required to leverage various techniques/tools to analyze breakpoints and complete individual modules; they will be required to connect logically the outputs of these techniques/tools to infer the ground truth and gain big picture awareness of the cyber situation. The modules will be able to be used separately or as a whole in a typical network security course.
Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.
Event logs that originate from information systems enable comprehensive analysis of business processes, e.g., by process model discovery. However, logs potentially contain sensitive information about individual employees involved in process execution that are only partially hidden by an obfuscation of the event data. In this paper, we therefore address the risk of privacy-disclosure attacks on event logs with pseudonymized employee information. To this end, we introduce PRETSA, a novel algorithm for event log sanitization that provides privacy guarantees in terms of k-anonymity and t-closeness. It thereby avoids disclosure of employee identities, their membership in the event log, and their characterization based on sensitive attributes, such as performance information. Through step-wise transformations of a prefix-tree representation of an event log, we maintain its high utility for discovery of a performance-annotated process model. Experiments with real-world data demonstrate that sanitization with PRETSA yields event logs of higher utility compared to methods that exploit frequency-based filtering, while providing the same privacy guarantees.
Opportunities arising from IoT-enabled applications are significant, but market growth is inhibited by concerns over security and complexity. To address these issues, we propose the ERAMIS methodology, which is based on instantiation of a reference architecture that captures common design features, embodies best practice, incorporates good security properties by design, and makes explicit provision for operational security services and processes.
Aiming at the operation characteristics of power industry control system, this paper deeply analyses the attack mechanism and characteristics of power industry control system intrusion. On the basis of classifying and sorting out the attack characteristics of power industrial control system, this paper also attaches importance to break the basic theory and consequential technologies of industrial control network space security, and constructs the network intrusion as well as attack model of power industrial control system to realize the precise characterization of attackers' attack behavior, which provides a theoretical model for the analysis and early warning of attack behavior analysis of power industrial control systems.
Up to now, Software-defined network (SDN) has been developing for many years and various controller implementations have appeared. Most of these controllers contain the normal business logic as well as security defense function. This makes the business logic on the controller tightly coupled with the security function, which increases the burden of the controller and is not conducive to the evolution of the controller. To address this problem, we propose a proactive security framework PSA, which decouples the business logic and security function of the controller, and deploys the security function in the proactive security layer which lies between the data plane and the control plane, so as to provide a unified security defense framework for different controller implementations. Based on PSA, we design a security defense application for the data-to-control plane saturation attack, which overloads the infrastructure of SDN networks. We evaluate the prototype implementation of PSA in the software environments. The results show that PSA is effective with adding only minor overhead into the entire SDN infrastructure.
Power communication network is an important infrastructure of power system. For a large number of widely distributed business terminals and communication terminals. The data protection is related to the safe and stable operation of the whole power grid. How to solve the problem that lots of nodes need a large number of keys and avoid the situation that these nodes cannot exchange information safely because of the lack of keys. In order to solve the problem, this paper proposed a segmentation and combination technology based on quantum key to extend the limited key. The basic idea was to obtain a division scheme according to different conditions, and divide a key into several different sub-keys, and then combine these key segments to generate new keys and distribute them to different terminals in the system. Sufficient keys were beneficial to key updating, and could effectively enhance the ability of communication system to resist damage and intrusion. Through the analysis and calculation, the validity of this method in the use of limited quantum keys to achieve the business data secure transmission of a large number of terminal was further verified.
With the continuously development of smart meter-reading technologies for decades, remote information collection of electricity, water, gas and heat meters have been realized. Due to the difference of electrical interfaces and communication protocols among various types of meters, communication modes of meter terminals are not so compatible, it is difficult to realize communication optimization of electricity, water, gas and heat meters information collection services. In addition, with the development of power consumption information acquisition system, the number of acquisition terminals soars greatly and the data of terminal access is highly concurrent. Therefore, the risk of security access is increasing. This paper presents a light-weighted security access scheme of power line communication based on multi-source data acquisition of electricity, water, gas and heat meters, which separates multi-source data acquisition services and achieve services security isolation and channel security isolation. The communication reliability and security of the meter-reading service of "electricity, water, gas and heat" will be improved and the integrated meter service will be realized reliably.
Cybersecurity assurance plays an important role in managing trust in smart grid communication systems. In this paper, cybersecurity assurance controls for smart grid communication networks and devices are delineated from the more technical functional controls to provide insights on recent innovative risk-based approaches to cybersecurity assurance in smart grid systems. The cybersecurity assurance control baselining presented in this paper is based on requirements and guidelines of the new family of IEC 62443 standards on network and systems security of industrial automation and control systems. The paper illustrates how key cybersecurity control baselining and tailoring concepts of the U.S. NIST SP 800-53 can be adopted in smart grid security architecture. The paper outlines the application of IEC 62443 standards-based security zoning and assignment of security levels to the zones in smart grid system architectures. To manage trust in the smart grid system architecture, cybersecurity assurance base lining concepts are applied per security impact levels. Selection and justification of security assurance controls presented in the paper is utilizing the approach common in Security Technical Implementation Guides (STIGs) of the U.S. Defense Information Systems Agency. As shown in the paper, enhanced granularity for managing trust both on the overall system and subsystem levels of smart grid systems can be achieved by implementation of the instructions of the CNSSI 1253 of the U.S. Committee of National Security Systems on security categorization and control selection for national security systems.
Industrial control systems are the fundamental infrastructures of a country. Since the intrusion attack methods for industrial control systems have become complex and concealed, the traditional protection methods, such as vulnerability database, virus database and rule matching cannot cope with the attacks hidden inside the terminals of industrial control systems. In this work, we propose a control flow anomaly detection algorithm based on the control flow of the business programs. First, a basic group partition method based on key paths is proposed to reduce the performance burden caused by tabbed-assert control flow analysis method through expanding basic research units. Second, the algorithm phases of standard path set acquisition and path matching are introduced. By judging whether the current control flow path is deviating from the standard set or not, the abnormal operating conditions of industrial control can be detected. Finally, the effectiveness of a control flow anomaly detection (checking) algorithm based on Path Matching (CFCPM) is demonstrated by anomaly detection ability analysis and experiments.