Visible to the public Biblio

Found 6869 results

Filters: Keyword is resilience  [Clear All Filters]
2023-06-22
Malla, Sai Anish, Kapoor, Khushee, Kejariwal, Adithya, Rao, Vidya, Kundapur, Poornimaa Panduranga.  2022.  SWARM: Sanitizer With Attendance through Remote Monitoring. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER). :316–319.
With Covid19 being endemic, it is very essential to continue proper physical hygiene protocols even today to avoid escalation. To ensure hygiene inside educational institutions, many governing bodies-imposed protocols to insist students wear hand gloves and facemasks. Such an implementation, however, has increased surgical waste in and around educational institutions, and also there is a rise in allergies due to the constant use of hand gloves by the students. Hence, a prototype of a hand sanitization-based attendance monitoring system has been proposed in the current research paper. This proposed sanitizer with attendance through remote monitoring (SWARM) uses Raspberry Pi devices to capture the image of a student’s identity card holding the registration number and through a bar code analysis module of computer vision, the ID number is extracted. This ID number is compared with a master attendance file to mark the students’ presence and then the updated file is shared with the concerned teacher via email. Such a setup is installed in the laboratory premise, thereby reducing the unnecessary use and disposal of surgical waste within the educational premise.
Xu, Yi, Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2022.  Preserving Trajectory Privacy in Driving Data Release. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3099–3103.
Real-time data transmissions from a vehicle enhance road safety and traffic efficiency by aggregating data in a central server for data analytics. When drivers share their instantaneous vehicular information for a service provider to perform a legitimate task, a curious service provider may also infer private information it has not been authorized for. In this paper, we propose a privacy preservation framework based on the Hilbert Schmidt Independence Criterion (HSIC) to sanitize driving data to protect the vehicle’s trajectory from adversarial inference while ensuring the data is still useful for driver behavior detection. We develop a deep learning model to learn the HSIC sanitizer and demonstrate through two datasets that our approach achieves better utility-privacy trade-offs when compared to three other benchmarks.
ISSN: 2379-190X
Raghav, Nidhi, Bhola, Anoop Kumar.  2022.  Secured framework for privacy preserving healthcare based on blockchain. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
Healthcare has become one of the most important aspects of people’s lives, resulting in a surge in medical big data. Healthcare providers are increasingly using Internet of Things (IoT)-based wearable technologies to speed up diagnosis and treatment. In recent years, Through the Internet, billions of sensors, gadgets, and vehicles have been connected. One such example is for the treatment and care of patients, technology—remote patient monitoring—is already commonplace. However, these technologies also offer serious privacy and data security problems. Data transactions are transferred and logged. These medical data security and privacy issues might ensue from a pause in therapy, putting the patient’s life in jeopardy. We planned a framework to manage and analyse healthcare large data in a safe manner based on blockchain. Our model’s enhanced privacy and security characteristics are based on data sanitization and restoration techniques. The framework shown here make data and transactions more secure.
ISSN: 2329-7190
Park, Soyoung, Kim, Jongseok, Lim, Younghoon, Seo, Euiseong.  2022.  Analysis and Mitigation of Data Sanitization Overhead in DAX File Systems. 2022 IEEE 40th International Conference on Computer Design (ICCD). :255–258.
A direct access (DAX) file system maximizes the benefit of persistent memory(PM)’s low latency through removing the page cache layer from the file system access paths. However, this paper reveals that data block allocation of the DAX file systems in common is significantly slower than that of conventional file systems because the DAX file systems require the zero-out operation for the newly allocated blocks to prevent the leakage of old data previously stored in the allocated data blocks. The retarded block allocation significantly affects the file write performance. In addition to this revelation, this paper proposes an off-critical-path data block sanitization scheme tailored for DAX file systems. The proposed scheme detaches the zero-out operation from the latency-critical I/O path and performs that of released data blocks in the background. The proposed scheme’s design principle is universally applicable to most DAX file systems. For evaluation, we implemented our approach in Ext4-DAX and XFS-DAX. Our evaluation showed that the proposed scheme reduces the append write latency by 36.8%, and improved the performance of FileBench’s fileserver workload by 30.4%, YCSB’s workload A on RocksDB by 3.3%, and the Redis-benchmark by 7.4% on average, respectively.
ISSN: 2576-6996
Sun, Yanchao, Han, Yuanfeng, Zhang, Yue, Chen, Mingsong, Yu, Shui, Xu, Yimin.  2022.  DDoS Attack Detection Combining Time Series-based Multi-dimensional Sketch and Machine Learning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :01–06.
Machine learning-based DDoS attack detection methods are mostly implemented at the packet level with expensive computational time costs, and the space cost of those sketch-based detection methods is uncertain. This paper proposes a two-stage DDoS attack detection algorithm combining time series-based multi-dimensional sketch and machine learning technologies. Besides packet numbers, total lengths, and protocols, we construct the time series-based multi-dimensional sketch with limited space cost by storing elephant flow information with the Boyer-Moore voting algorithm and hash index. For the first stage of detection, we adopt CNN to generate sketch-level DDoS attack detection results from the time series-based multi-dimensional sketch. For the sketch with potential DDoS attacks, we use RNN with flow information extracted from the sketch to implement flow-level DDoS attack detection in the second stage. Experimental results show that not only is the detection accuracy of our proposed method much close to that of packet-level DDoS attack detection methods based on machine learning, but also the computational time cost of our method is much smaller with regard to the number of machine learning operations.
ISSN: 2576-8565
Kivalov, Serhii, Strelkovskaya, Irina.  2022.  Detection and prediction of DDoS cyber attacks using spline functions. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :710–713.
The issues of development and legal regulation of cybersecurity in Ukraine are considered. The expediency of further improvement of the regulatory framework, its implementation and development of cybersecurity systems is substantiated. Further development of the theoretical base of cyber defense using spline functions is proposed. The characteristics of network traffic are considered from the point of view of detecting DDoS cyber attacks (SYN-Flood, ICMP-Flood, UDP-Flood) and predicting DDoS cyber-attacks using spline functions. The spline extrapolation method makes it possible to predict DDoS cyber attacks with great accuracy.
Zhao, Wanqi, Sun, Haoyue, Zhang, Dawei.  2022.  Research on DDoS Attack Detection Method Based on Deep Neural Network Model inSDN. 2022 International Conference on Networking and Network Applications (NaNA). :184–188.
This paper studies Distributed Denial of Service (DDoS) attack detection by adopting the Deep Neural Network (DNN) model in Software Defined Networking (SDN). We first deploy the flow collector module to collect the flow table entries. Considering the detection efficiency of the DNN model, we also design some features manually in addition to the features automatically obtained by the flow table. Then we use the preprocessed data to train the DNN model and make a prediction. The overall detection framework is deployed in the SDN controller. The experiment results illustrate DNN model has higher accuracy in identifying attack traffic than machine learning algorithms, which lays a foundation for the defense against DDoS attack.
Pavan Kumar, R Sai, Chand, K Gopi, Krishna, M Vamsi, Nithin, B Gowtham, Roshini, A, Swetha, K.  2022.  Enhanced DDOS Attack Detection Algorithm to Increase Network Lifetime in Cloud Environment. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1783–1787.
DDoS attacks, one of the oldest forms of cyberthreats, continue to be a favorite tool of mass interruption, presenting cybersecurity hazards to practically every type of company, large and small. As a matter of fact, according to IDC, DDoS attacks are predicted to expand at an 18 percent compound annual growth rate (CAGR) through 2023, indicating that it is past time to enhance investment in strong mitigation systems. And while some firms may assume they are limited targets for a DDoS assault, the amount of structured internet access to power corporation services and apps exposes everyone to downtime and poor performance if the infrastructure is not protected against such attacks. We propose using correlations between missing packets to increase detection accuracy. Furthermore, to ensure that these correlations are calculated correctly.
ISSN: 2575-7288
Hashim, Noor Hassanin, Sadkhan, Sattar B..  2022.  DDOS Attack Detection in Wireless Network Based On MDR. 2022 3rd Information Technology To Enhance e-learning and Other Application (IT-ELA). :1–5.
Intrusion detection systems (IDS) are most efficient way of defending against network-based attacks aimed at system devices, especially wireless devices. These systems are used in almost all large-scale IT infrastructures components, and they effected with different types of network attacks such as DDoS attack. Distributed Denial of-Services (DDoS) attacks the protocols and systems that are intended to provide services (to the public) are inherently vulnerable to attacks like DDoS, which were launched against a number of important Internet sites where security precautions were in place.
Li, Mengxue, Zhang, Binxin, Wang, Guangchang, ZhuGe, Bin, Jiang, Xian, Dong, Ligang.  2022.  A DDoS attack detection method based on deep learning two-level model CNN-LSTM in SDN network. 2022 International Conference on Cloud Computing, Big Data Applications and Software Engineering (CBASE). :282–287.
This paper mainly explores the detection and defense of DDoS attacks in the SDN architecture of the 5G environment, and proposes a DDoS attack detection method based on the deep learning two-level model CNN-LSTM in the SDN network. Not only can it greatly improve the accuracy of attack detection, but it can also reduce the time for classifying and detecting network traffic, so that the transmission of DDoS attack traffic can be blocked in time to ensure the availability of network services.
Chen, Jing, Yang, Lei, Qiu, Ziqiao.  2022.  Survey of DDoS Attack Detection Technology for Traceability. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). :112–115.
Target attack identification and detection has always been a concern of network security in the current environment. However, the economic losses caused by DDoS attacks are also enormous. In recent years, DDoS attack detection has made great progress mainly in the user application layer of the network layer. In this paper, a review and discussion are carried out according to the different detection methods and platforms. This paper mainly includes three parts, which respectively review statistics-based machine learning detection, target attack detection on SDN platform and attack detection on cloud service platform. Finally, the research suggestions for DDoS attack detection are given.
Bennet, Ms. Deepthi Tabitha, Bennet, Ms. Preethi Samantha, Anitha, D.  2022.  Securing Smart City Networks - Intelligent Detection Of DDoS Cyber Attacks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1575–1580.

A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.

Rajan, Dhanya M, Sathya Priya, S.  2022.  DDoS mitigation techniques in IoT: A Survey. 2022 International Conference on IoT and Blockchain Technology (ICIBT). :1–7.
Cities are becoming increasingly smart as the Internet of Things (IoT) proliferates. With IoT devices interconnected, smart cities can offer novel and ubiquitous services as well as automate many of our daily lives (e.g., smart health, smart home). The abundance in the number of IoT devices leads to divergent types of security threats as well. One of such important attacks is the Distributed Denial of Service attack(DDoS). DDoS attacks have become increasingly common in the internet of things because of the rapid growth of insecure devices. These attacks slow down legitimate network requests. Although DDoS attacks were first reported in 1996, the sophistication of these attacks has increased significantly. In mid-August 2020, a 2 Terabytes per second(TBps) attack targeting critical infrastructure, such as finance, was reported. In the next two years, it is predicted that this number will double to 15 million attacks. Blockchain technology, whose development dates back to the advent of the internet, has become one of the most important advancements to come along since that time. Several applications can use this technology to secure exchanges. Using blockchain to mitigate DDoS attacks is discussed in this survey paper in diverse domains to date. Its purpose is to expose the strengths, weaknesses, and limitations of the different approaches to DDoS mitigation. As a research and development platform for DDoS mitigation, this paper will act as a central hub for a more comprehensive understanding of these approaches.
Ashodia, Namita, Makadiya, Kishan.  2022.  Detection and Mitigation of DDoS attack in Software Defined Networking: A Survey. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :1175–1180.

Software Defined Networking (SDN) is an emerging technology, which provides the flexibility in communicating among network. Software Defined Network features separation of the data forwarding plane from the control plane which includes controller, resulting centralized network. Due to centralized control, the network becomes more dynamic, and resources are managed efficiently and cost-effectively. Network Virtualization is transformation of network from hardware-based to software-based. Network Function Virtualization will permit implementation, adaptable provisioning, and even management of functions virtually. The use of virtualization of SDN networks permits network to strengthen the features of SDN and virtualization of NFV and has for that reason has attracted notable research awareness over the last few years. SDN platform introduces network security challenges. The network becomes vulnerable when a large number of requests is encapsulated inside packet\_in messages and passed to controller from switch for instruction, if it is not recognized by existing flow entry rules. which will limit the resources and become a bottleneck for the entire network leading to DDoS attack. It is necessary to have quick provisional methods to prevent the switches from breaking down. To resolve this problem, the researcher develops a mechanism that detects and mitigates flood attacks. This paper provides a comprehensive survey which includes research relating frameworks which are utilized for detecting attack and later mitigation of flood DDoS attack in Software Defined Network (SDN) with the help of NFV.

Fenil, E., Kumar, P. Mohan.  2022.  Towards a secure Software Defined Network with Adaptive Mitigation of DDoS attacks by Machine Learning Approaches. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–13.
DDoS attacks produce a lot of traffic on the network. DDoS attacks may be fought in a novel method thanks to the rise of Software Defined Networking (SDN). DDoS detection and data gathering may lead to larger system load utilization among SDN as well as systems, much expense of SDN, slow reaction period to DDoS if they are conducted at regular intervals. Using the Identification Retrieval algorithm, we offer a new DDoS detection framework for detecting resource scarcity type DDoS attacks. In designed to check low-density DDoS attacks, we employ a combination of network traffic characteristics. The KSVD technique is used to generate a dictionary of network traffic parameters. In addition to providing legitimate and attack traffic models for dictionary construction, the suggested technique may be used to network traffic as well. Matching Pursuit and Wavelet-based DDoS detection algorithms are also implemented and compared using two separate data sets. Despite the difficulties in identifying LR-DoS attacks, the results of the study show that our technique has a detection accuracy of 89%. DDoS attacks are explained for each type of DDoS, and how SDN weaknesses may be exploited. We conclude that machine learning-based DDoS detection mechanisms and cutoff point DDoS detection techniques are the two most prevalent methods used to identify DDoS attacks in SDN. More significantly, the generational process, benefits, and limitations of each DDoS detection system are explained. This is the case in our testing environment, where the intrusion detection system (IDS) is able to block all previously identified threats
Kukreti, Sambhavi, Modgil, Sumit Kumar, Gehlot, Neha, Kumar, Vinod.  2022.  DDoS Attack using SYN Flooding: A Case Study. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :323–329.
Undoubtedly, technology has not only transformed our world of work and lifestyle, but it also carries with it a lot of security challenges. The Distributed Denial-of-Service (DDoS) attack is one of the most prominent attacks witnessed by cyberspace of the current era. This paper outlines several DDoS attacks, their mitigation stages, propagation of attacks, malicious codes, and finally provides redemptions of exhibiting normal and DDoS attacked scenarios. A case study of a SYN flooding attack has been exploited by using Metasploit. The utilization of CPU frame length and rate have been observed in normal and attacked phases. Preliminary results clearly show that in a normal scenario, CPU usage is about 20%. However, in attacked phases with the same CPU load, CPU execution overhead is nearly 90% or 100%. Thus, through this research, the major difference was found in CPU usage, frame length, and degree of data flow. Wireshark tool has been used for network traffic analyzer.
Kumar, Anmol, Somani, Gaurav.  2022.  DDoS attack mitigation in cloud targets using scale-inside out assisted container separation. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
From the past few years, DDoS attack incidents are continuously rising across the world. DDoS attackers have also shifted their target towards cloud environments as majority of services have shifted their operations to cloud. Various authors proposed distinct solutions to minimize the DDoS attacks effects on victim services and co-located services in cloud environments. In this work, we propose an approach by utilizing incoming request separation at the container-level. In addition, we advocate to employ scale-inside out [10] approach for all the suspicious requests. In this manner, we achieve the request serving of all the authenticated benign requests even in the presence of an attack. We also improve the usages of scale-inside out approach by applying it to a container which is serving the suspicious requests in a separate container. The results of our proposed technique show a significant decrease in the response time of benign users during the DDoS attack as compared with existing solutions.
Žádník, Martin.  2022.  Towards Inference of DDoS Mitigation Rules. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–5.
DDoS attacks still represent a severe threat to network services. While there are more or less workable solutions to defend against these attacks, there is a significant space for further research regarding automation of reactions and subsequent management. In this paper, we focus on one piece of the whole puzzle. We strive to automatically infer filtering rules which are specific to the current DoS attack to decrease the time to mitigation. We employ a machine learning technique to create a model of the traffic mix based on observing network traffic during the attack and normal period. The model is converted into the filtering rules. We evaluate our approach with various setups of hyperparameters. The results of our experiments show that the proposed approach is feasible in terms of the capability of inferring successful filtering rules.
ISSN: 2374-9709
Satyanarayana, D, Alasmi, Aisha Said.  2022.  Detection and Mitigation of DDOS based Attacks using Machine Learning Algorithm. 2022 International Conference on Cyber Resilience (ICCR). :1–5.

In recent decades, a Distributed Denial of Service (DDoS) attack is one of the most expensive attacks for business organizations. The DDoS is a form of cyber-attack that disrupts the operation of computer resources and networks. As technology advances, the styles and tools used in these attacks become more diverse. These attacks are increased in frequency, volume, and intensity, and they can quickly disrupt the victim, resulting in a significant financial loss. In this paper, it is described the significance of DDOS attacks and propose a new method for detecting and mitigating the DDOS attacks by analyzing the traffics coming to the server from the BOTNET in attacking system. The process of analyzing the requests coming from the BOTNET uses the Machine learning algorithm in the decision making. The simulation is carried out and the results analyze the DDOS attack.

Wang, Danni, Li, Sizhao.  2022.  Automated DDoS Attack Mitigation for Software Defined Network. 2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :100–104.
Network security is a prominent topic that is gaining international attention. Distributed Denial of Service (DDoS) attack is often regarded as one of the most serious threats to network security. Software Defined Network (SDN) decouples the control plane from the data plane, which can meet various network requirements. But SDN can also become the object of DDoS attacks. This paper proposes an automated DDoS attack mitigation method that is based on the programmability of the Ryu controller and the features of the OpenFlow switch flow tables. The Mininet platform is used to simulate the whole process, from SDN traffic generation to using a K-Nearest Neighbor model for traffic classification, as well as identifying and mitigating DDoS attack. The packet counts of the victim's malicious traffic input port are significantly lower after the mitigation method is implemented than before the mitigation operation. The purpose of mitigating DDoS attack is successfully achieved.
ISSN: 2163-5056
Sai, A N H Dhatreesh, Tilak, B H, Sanjith, N Sai, Suhas, Padi, Sanjeetha, R.  2022.  Detection and Mitigation of Low and Slow DDoS attack in an SDN environment. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER). :106–111.

Distributed Denial of Service (DDoS) attacks aim to make a server unresponsive by flooding the target server with a large volume of packets (Volume based DDoS attacks), by keeping connections open for a long time and exhausting the resources (Low and Slow DDoS attacks) or by targeting protocols (Protocol based attacks). Volume based DDoS attacks that flood the target server with a large number of packets are easier to detect because of the abnormality in packet flow. Low and Slow DDoS attacks, however, make the server unavailable by keeping connections open for a long time, but send traffic similar to genuine traffic, making detection of such attacks difficult. This paper proposes a solution to detect and mitigate one such Low and slow DDoS attack, Slowloris in an SDN (Software Defined Networking) environment. The proposed solution involves communication between the detection and mitigation module and the controller of the Software Defined Network to get data to detect and mitigate low and slow DDoS attack.

Santhosh Kumar, B.J, Sanketh Gowda, V.S.  2022.  Detection and Prevention of UDP Reflection Amplification Attack in WSN Using Cumulative Sum Algorithm. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Wireless sensor networks are used in many areas such as war field surveillance, monitoring of patient, controlling traffic, environmental and building surveillance. Wireless technology, on the other hand, brings a load of new threats with it. Because WSNs communicate across radio frequencies, they are more susceptible to interference than wired networks. The authors of this research look at the goals of WSNs in terms of security as well as DDOS attacks. The majority of techniques are available for detecting DDOS attacks in WSNs. These alternatives, on the other hand, stop the assault after it has begun, resulting in data loss and wasting limited sensor node resources. The study finishes with a new method for detecting the UDP Reflection Amplification Attack in WSN, as well as instructions on how to use it and how to deal with the case.
Muragaa, Wisam H. A.  2022.  The single packet Low-rate DDoS attack detection and prevention in SDN. 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). :323–328.
The new paradigm software-defined networking (SDN) supports network innovation and makes the control of network operations more agile. The flow table is the main component of SDN switch which contains a set of flow entries that define how new flows are processed. Low-rate distributed denial-of-service (LR-DDoS) attacks are difficult to detect and mitigate because they behave like legitimate users. There are many detection methods for LR DDoS attacks in the literature, but none of these methods detect single-packet LR DDoS attacks. In fact, LR DDoS attackers exploit vulnerabilities in the mechanism of congestion control in TCP to either periodically retransmit burst attack packets for a short time period or to continuously launch a single attack packet at a constant low rate. In this paper, the proposed scheme detects LR-DDoS by examining all incoming packets and filtering the single packets sent from different source IP addresses to the same destination at a constant low rate. Sending single packets at a constant low rate will increase the number of flows at the switch which can make it easily overflowed. After detecting the single attack packets, the proposed scheme prevents LR-DDoS at its early stage by deleting the flows created by these packets once they reach the threshold. According to the results of the experiment, the scheme achieves 99.47% accuracy in this scenario. In addition, the scheme has simple logic and simple calculation, which reduces the overhead of the SDN controller.
Black, Samuel, Kim, Yoohwan.  2022.  An Overview on Detection and Prevention of Application Layer DDoS Attacks. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0791–0800.
Distributed Denial-of-Service (DDoS) attacks aim to cause downtime or a lack of responsiveness for web services. DDoS attacks targeting the application layer are amongst the hardest to catch as they generally appear legitimate at lower layers and attempt to take advantage of common application functionality or aspects of the HTTP protocol, rather than simply send large amounts of traffic like with volumetric flooding. Attacks can focus on functionality such as database operations, file retrieval, or just general backend code. In this paper, we examine common forms of application layer attacks, preventative and detection measures, and take a closer look specifically at HTTP Flooding attacks by the High Orbit Ion Cannon (HOIC) and “low and slow” attacks through slowloris.
Verma, Amandeep, Saha, Rahul.  2022.  Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.