Biblio
Filters: Keyword is resilience [Clear All Filters]
FPGA Implementation of High Performance Hybrid Encryption Standard. 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC). :103–107.
.
2022. Now a day's data hacking is the main issue for cloud computing, protecting a data there are so many methods in that one most usable method is the data Encryption. Process of Encryption is the converting a data into an un readable form using encryption key, encoded version that can only be read with authorized access to the decryption key. This paper presenting a simple, energy and area efficient method for endurance issue in secure resistive main memories. In this method, by employing the random characteristics of the encrypted data encoded by the Advanced Encryption Standard (AES) as well as a rotational shift operation. Random Shifter is simple hardware implementation and energy efficient method. It is considerably smaller than that of other recently proposed methods. Random Shifter technique used for secure memory with other error correction methods. Due to their reprogram ability, Field Programmable Gate Arrays (FPGA) are a popular choice for the hardware implementation of cryptographic algorithms. The proposed random shifter algorithm for AES and DES (Hybrid) data is implemented in the VIRTEX FPGA and it is efficient and suitable for hardware-critical applications. This Paper is implemented using model sim and Xilinx 14.5 version.
An Efficient Medical Image Encryption Using Magic Square and PSO. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1–5.
.
2022. Encryption is essential for protecting sensitive data, especially images, against unauthorized access and exploitation. The goal of this work is to develop a more secure image encryption technique for image-based communication. The approach uses particle swarm optimization, chaotic map and magic square to offer an ideal encryption effect. This work introduces a novel encryption algorithm based on magic square. The image is first broken down into single-byte blocks, which are then replaced with the value of the magic square. The encrypted images are then utilized as particles and a starting assembly for the PSO optimization process. The correlation coefficient applied to neighboring pixels is used to define the ideal encrypted image as a fitness function. The results of the experiments reveal that the proposed approach can effectively encrypt images with various secret keys and has a decent encryption effect. As a result of the proposed work improves the public key method's security while simultaneously increasing memory economy.
Implementation of Efficient Hybrid Encryption Technique. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–4.
.
2022. Security troubles of restricted sources communications are vital. Existing safety answers aren't sufficient for restricted sources gadgets in phrases of Power Area and Ef-ficiency‘. Elliptic curves cryptosystem (ECC) is area efficent for restricted sources gadgets extra than different uneven cryp-to systems because it gives a better safety degree with equal key sizes compared to different present techniques. In this paper, we studied a lightweight hybrid encryption technique that makes use of set of rules primarily based totally on AES for the Plain text encription and Elliptic Curve Diffie-Hellman (ECDH) protocol for Key encryption. The simplicity of AES implementation makes it light weight and the complexity of ECDH make it secure. The design is simulated using Spyder Tool, Modelsim and Implemented using Xilinx Vivado the effects display that the proposed lightweight Model offers a customary security degree with decreased computing capacity. we proposed a key authentication system for enhanced security along with an Idea to implement the project with multimedia input on FPGA
An Efficient Approach to Reduce the Encryption and Decryption Time Based on the Concept of Unique Values. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :535–540.
.
2022. Data security has become the most important issue in every institution or company. With the existence of hackers, intruders, and third parties on the cloud, securing data has become more challenging. This paper uses a hybrid encryption method that is based on the Elliptic Curve Cryptography (ECC) and Fully Homomorphic Encryption (FHE). ECC is used as a lightweight encryption algorithm that can provide a good level of security. Besides, FHE is used to enable data computation on the encrypted data in the cloud. In this paper, the concept of unique values is combined with the hybrid encryption method. Using the concept of unique values contributes to decreasing the encryption and decryption time obviously. To evaluate the performance of the combined encryption method, the provided results are compared with the ones in the encryption method without using the concept of unique values. Experiments show that the combined encryption method can reduce the encryption time up to 43% and the decryption time up to 56%.
ISSN: 2770-7466
Data Encryption and Decryption Using DNA and Embedded Technology. 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT). :1—5.
.
2022. Securing communication and information is known as cryptography. To convert messages from plain text to cipher text and the other way around. It is the process of protecting the data and sending it to the right audience so they can understand and process it. Hence, unauthorized access is avoided. This work suggests leveraging DNA technology for encrypt and decrypt the data. The main aim of utilizing the AES in this stage will transform ASCII code to hexadecimal to binary coded form and generate DNA. The message is encrypted with a random key. Shared key used for encrypt and decrypt the data. The encrypted data will be disguised as an image using steganography. To protect our data from hijackers, assailants, and muggers, it is frequently employed in institutions, banking, etc.
A Hybrid Encryption Technique based on DNA Cryptography and Steganography. 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0501—0508.
.
2022. The importance of data and its transmission rate are increasing as the world is moving towards online services every day. Thus, providing data security is becoming of utmost importance. This paper proposes a secure data encryption and hiding method based on DNA cryptography and steganography. Our approach uses DNA for encryption and data hiding processes due to its high capacity and simplicity in securing various kinds of data. Our proposed method has two phases. In the first phase, it encrypts the data using DNA bases along with Huffman coding. In the second phase, it hides the encrypted data into a DNA sequence using a substitution algorithm. Our proposed method is blind and preserves biological functionality. The result shows a decent cracking probability with comparatively better capacity. Our proposed method has eliminated most limitations identified in the related works. Our proposed hybrid technique can provide a double layer of security to sensitive data.
Securing digital economies byimplementing DNA cryptography with amino acid and one-time pad. Competitive Advantage in the Digital Economy (CADE 2022). 2022:99—104.
.
2022. Technology is transforming rapidly. Security during data transmission is an increasingly critical and essential factor for the integrity and confidentiality of data in the financial domain, such as e-commerce transactions and bank transactions, etc. We cannot overestimate the importance of encryption/decryption of information in the digital economy. The need to strengthen and secure the digital economy is urgent. Cryptography maintains the security and integrity of data kept on computers and data communicated over the internet using encryption/decryption. A new concept in cryptography named DNA cryptography has attracted the interest of information security professionals. The DNA cryptography method hides data using a DNA sequence, with DNA encryption converting binary data into the DNA sequence. Deoxy Ribonucleic Acid (DNA) is a long polymer strand having nitrogen bases adenine (A), thymine (T), cytosine (C), and guanine (G), which play an important role in plain text encoding and decoding. DNA has high storage capacity, fast processing, and high computation capacity, and is more secure than other cryptography algorithms. DNA cryptography supports both symmetric and asymmetric cryptography. DNA cryptography can encrypt numeric values, English language and unicast. The main aim of this paper is to explain different aspects of DNA cryptography and how it works. We also compare different DNA algorithms/methods proposed in a previous paper, and implement DNA cryptography using one-time pad (OTP) and amino acid sequence using java language. OTP is used for symmetric key generation and the DNA sequence is converted to an amino acid sequence to create confusion.
DNA-based Secret Sharing and Hiding in Dispersed Computing. 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :126—127.
.
2022. In this paper will be described a new security protocol for secret sharing and hiding, which use selected personal features. Such technique allows to create human-oriented personalized security protocols dedicated for particular users. Proposed method may be applied in dispersed computing systems, where secret data should be divided into particular number of parts.
Combining DNA Encoding and Chaos for Medical Image Encryption. 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :277—282.
.
2022. A vast volume of digital electronic health records is exchanged across the open network in this modern era. Cross all the existing security methods, encryption is a dependable method of data security. This study discusses an encryption technique for digital medical images that uses chaos combined with deoxyribonucleic acid (DNA). In fact, Rossler's and Lorenz's chaotic systems along with DNA encoding are used in the suggested medical image cryptographic system. Chaos is used to create a random key stream. The DNA encoding rules are then used to encode the key and the input original image. A hardware design of the proposed scheme is implemented on the Zedboard development kit. The experimental findings show that the proposed cryptosystem has strong security while maintaining acceptable hardware performances.
Colour Image Encryption Using Chaotic Trigonometric Map and DNA Coding. 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). :172—176.
.
2022. The problem of information privacy has grown more significant in terms of data storage and communication in the 21st century due to the technological explosion during which information has become a highly important strategic resource. The idea of employing DNA cryptography has been highlighted as a potential technology that offers fresh hope for unbreakable algorithms since standard cryptosystems are becoming susceptible to assaults. Due to biological DNA's outstanding energy efficiency, enormous storage capacity, and extensive parallelism, a new branch of cryptography based on DNA computing is developing. There is still more study to be done since this discipline is still in its infancy. This work proposes a DNA encryption strategy based on cryptographic key generation techniques and chaotic diffusion operation.
Safeguard Algorithm by Conventional Security with DNA Cryptography Method. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST). :195—201.
.
2022. Encryption defined as change information process (which called plaintext) into an unreadable secret format (which called ciphertext). This ciphertext could not be easily understood by somebody except authorized parson. Decryption is the process to converting ciphertext back into plaintext. Deoxyribonucleic Acid (DNA) based information ciphering techniques recently used in large number of encryption algorithms. DNA used as data carrier and the modern biological technology is used as implementation tool. New encryption algorithm based on DNA is proposed in this paper. The suggested approach consists of three steps (conventional, stream cipher and DNA) to get high security levels. The character was replaced by shifting depend character location in conventional step, convert to ASCII and AddRoundKey was used in stream cipher step. The result from second step converted to DNA then applying AddRoundKey with DNA key. The evaluation performance results proved that the proposed algorithm cipher the important data with high security levels.
DNA Cryptography Based on NTRU Cryptosystem to Improve Security. 2022 IEEE 8th Information Technology International Seminar (ITIS). :27—31.
.
2022. Information exchange occurs all the time in today’s internet era. Some of the data are public, and some are private. Asymmetric cryptography plays a critical role in securing private data transfer. However, technological advances caused private data at risk due to the presence of quantum computers. Therefore, we need a new method for securing private data. This paper proposes combining DNA cryptography methods based on the NTRU cryptosystem to enhance security data confidentiality. This method is compared with conventional public key cryptography methods. The comparison shows that the proposed method has a slow encryption and decryption time compared to other methods except for RSA. However, the key generation time of the proposed method is much faster than other methods tested except for ECC. The proposed method is superior in key generation time and considerably different from other tested methods. Meanwhile, the encryption and decryption time is slower than other methods besides RSA. The test results can get different results based on the programming language used.
Anticounterfeiting Method for Drugs Using Synthetic DNA Cryptography. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.
.
2022. Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
.
2022. Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
Hierarchical Association Features Learning for Network Traffic Recognition. 2022 International Conference on Information Processing and Network Provisioning (ICIPNP). :129—133.
.
2022. With the development of network technology, identifying specific traffic has become important in network monitoring and security. However, designing feature sets that can accurately describe network traffic is still an urgent problem. Most of existing researches cannot realize effectively the identification of targets, and don't perform well in the complex and dynamic network environment. Aiming at these problems, we propose a novel method in this paper, which learns correlation features of network traffic based on the hierarchical structure. Firstly, the method learns the spatial-temporal features using convolutional neural networks (CNNs) and the bidirectional long short-term memory networks (Bi-LSTMs), then builds network topology to capture dependency characteristics between sessions and learns the context-related features through the graph attention networks (GATs). Finally, the network traffic session is classified using a fully connected network. The experimental results show that our method can effectively improve the detection ability and achieve a better classification performance overall.
D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
.
2022. In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
Research on Edge Network Security Technology Based on DHR. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :614—617.
.
2022. This paper examines how the extent of the network has expanded from the traditional computer Internet to the field of edge computing based on mobile communication technology with the in-depth development of the mobile Internet and the Internet of Things. In particular, the introduction of 5G has enabled massive edge computing nodes to build a high-performance, energy-efficient and low-latency mobile edge computing architecture. Traditional network security technologies and methods are not fully applicable in this environment. The focus of this paper is on security protection for edge networks. Using virtualized networks builds a dynamic heterogeneous redundancy security model (i.e., DHR). It first designs and evaluates the DHR security model, then constructs the required virtualized heterogeneous entity set, and finally constructs a DHR-based active defense scheme. Compared with existing network security solutions, the security protection technology of the edge network studied this time has a better protective effect against the unknown security threats facing the edge network.
Trust-Aware Security system for Dynamic Southbound Communication in Software Defined Network. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :93—97.
.
2022. The vast proliferation of the connected devices makes the operation of the traditional networks so complex and drops the network performance, particularly, failure cases. In fact, a novel solution is proposed to enable the management of the network resources and services named software defined network (SDN). SDN splits the data plane and the control plane by centralizing all the control plane on one common platform. Further, SDN makes the control plane programmable by offering high flexibility for the network management and monitoring mostly in failure cases. However, the main challenge in SDN is security that is presented as the first barrier for its development. Security in SDN is presented at various levels and forms, particularly, the communication between the data plane and control plane that presents a weak point in SDN framework. In this article, we suggest a new security framework focused on the combination between the trust and awareness concepts (TAS-SDN) for a dynamic southbound communication SDN. Further, TAS-SDN uses trust levels to establish a secure communication between the control plane and data plane. As a result, we discuss the implementation and the performance of TAS-SDN which presents a promote security solution in terms of time execution, complexity and scalability for SDN.
Cross-Security Domain Dynamic Orchestration Algorithm of Network Security Functions. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :413—419.
.
2022. To prevent all sorts of attacks, the technology of security service function chains (SFC) is proposed in recent years, it becomes an attractive research highlights. Dynamic orchestration algorithm can create SFC according to the resource usage of network security functions. The current research on creating SFC focuses on a single domain. However in reality the large and complex networks are divided into security domains according to different security levels and managed separately. Therefore, we propose a cross-security domain dynamic orchestration algorithm to create SFC for network security functions based on ant colony algorithm(ACO) and consider load balancing, shortest path and minimum delay as optimization objectives. We establish a network security architecture based on the proposed algorithm, which is suitable for the industrial vertical scenarios, solves the deployment problem of the dynamic orchestration algorithm. Simulation results verify that our algorithm achieves the goal of creating SFC across security domains and demonstrate its performance in creating service function chains to resolve abnormal traffic flows.
Resilient Control for Time-Delay Systems in Cyber-Physical Environment Using State Estimation and Switching Moving Defense. 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :204—212.
.
2022. Cybersecurity for complex systems operating in cyber-physical environment is becoming more and more critical because of the increasing cyber threats and systems' vulnerabilities. Security by design is quite an important method to ensure the systems' normal operations and services supply. For the aim of coping with cyber-attack affections properly, this paper studies the resilient security control issue for time-varying delay systems in cyber-physical environment with state estimation and moving defense approach. Time-varying delay factor induced by communication and network transmission, or data acquisition and processing, or certain cyber-attacks, is considered. To settle the cyber-attacks from the perspective of system control, a dynamic system model considering attacks is presented, and the corresponding switched control model with time-varying delay against attacks is formulated. Then the state estimator for system states is designed to overcome the problem that certain states cannot be measured directly. Estimated states serve as the input of the resilient security controller. Sufficient conditions of the stability of the observer and control system are derived out with the Lyapunov stability analysis method jointly. A moving defense strategy based on anomaly detection and random switching is presented, in which an optimization problem for calculating the proper switching probability of each candidate actuator-controller pair is given. Simulation experimental results are shown to illustrate the effectiveness of the presented scheme.
Security Platoon Control of Connected Vehicle Systems under DoS Attacks and Dynamic Uncertainty. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—5.
.
2022. In this paper, the distributed security control problem of connected vehicle systems (CVSs) is investigated under denial of service (DoS) attacks and uncertain dynamics. DoS attacks usually block communication channels, resulting in the vehicle inability to receive data from the neighbors. In severe cases, it will affect the control performance of CVSs and even cause vehicle collision and life threats. In order to keep the vehicle platoon stable when the DoS attacks happen, we introduce a random characteristic to describe the impact of the packet loss behavior caused by them. Dependent on the length of the lost packets, we propose a security platoon control protocol to deal with it. Furthermore, the security platoon control problem of CVSs is transformed into a stable problem of Markov jump systems (MJSs) with uncertain parameters. Next, the Lyapunov function method and linear matrix inequations (LMI) are used to analyze the internal stability and design controller. Finally, several simulation results are presented to illustrate the effectiveness of the proposed method.
HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images. 2022 IEEE Symposium on Security and Privacy (SP). :1082—1099.
.
2022. Dynamic memory allocators are critical components of modern systems, and developers strive to find a balance between their performance and their security. Unfortunately, vulnerable allocators are routinely abused as building blocks in complex exploitation chains. Most of the research regarding memory allocators focuses on popular and standardized heap libraries, generally used by high-end devices such as desktop systems and servers. However, dynamic memory allocators are also extensively used in embedded systems but they have not received much scrutiny from the security community.In embedded systems, a raw firmware image is often the only available piece of information, and finding heap vulnerabilities is a manual and tedious process. First of all, recognizing a memory allocator library among thousands of stripped firmware functions can quickly become a daunting task. Moreover, emulating firmware functions to test for heap vulnerabilities comes with its own set of challenges, related, but not limited, to the re-hosting problem.To fill this gap, in this paper we present HEAPSTER, a system that automatically identifies the heap library used by a monolithic firmware image, and tests its security with symbolic execution and bounded model checking. We evaluate HEAPSTER on a dataset of 20 synthetic monolithic firmware images — used as ground truth for our analyses — and also on a dataset of 799 monolithic firmware images collected in the wild and used in real-world devices. Across these datasets, our tool identified 11 different heap management library (HML) families containing a total of 48 different variations. The security testing performed by HEAPSTER found that all the identified variants are vulnerable to at least one critical heap vulnerability. The results presented in this paper show a clear pattern of poor security standards, and raise some concerns over the security of dynamic memory allocators employed by IoT devices.
Assistance System to Consider Dynamic Phenomena for Secure System Operation. 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
.
2022. This contribution provides the implementation of a digital twin-based assistance system to be used in future control rooms. By applying parameter estimation methods, the dynamic model in the digital twin is an accurate representation of the physical system. Therefore, a dynamic security assessment (DSA) that is highly dependent on a correctly parameterized dynamic model, can give more reliable information to a system operator in the control room. The assistance system is studied on the Cigré TB 536 benchmark system with an obscured set of machine parameters. Through the proposed parameter estimation approach the original parameters could be estimated, changing, and increasing the statement of the DSA in regard to imminent instabilities.
Power Systems Security Assessment Based on Artificial Neural Networks. 2022 International Conference and Exposition on Electrical And Power Engineering (EPE). :535—539.
.
2022. Power system security assessment is a major issue among the fundamental functions needed for the proper power systems operation. In order to perform the security evaluation, the contingency analysis is a key component. However, the dynamic evolution of power systems during the past decades led to the necessity of novel techniques to facilitate this task. In this paper, power systems security is defined based on the N-l contingency analysis. An artificial neural network approach is proposed to ensure the fast evaluation of power systems security. In this regard, the IEEE 14 bus transmission system is used to verify the performance of the proposed model, the results showing high efficiency subject to multiple evaluation metrics.
An Online Framework for Adapting Security Policies in Dynamic IT Environments. 2022 18th International Conference on Network and Service Management (CNSM). :359—363.
.
2022. We present an online framework for learning and updating security policies in dynamic IT environments. It includes three components: a digital twin of the target system, which continuously collects data and evaluates learned policies; a system identification process, which periodically estimates system models based on the collected data; and a policy learning process that is based on reinforcement learning. To evaluate our framework, we apply it to an intrusion prevention use case that involves a dynamic IT infrastructure. Our results demonstrate that the framework automatically adapts security policies to changes in the IT infrastructure and that it outperforms a state-of-the-art method.