Barnard, Pieter, Macaluso, Irene, Marchetti, Nicola, DaSilva, Luiz A..
2022.
Resource Reservation in Sliced Networks: An Explainable Artificial Intelligence (XAI) Approach. ICC 2022 - IEEE International Conference on Communications. :1530—1535.
The growing complexity of wireless networks has sparked an upsurge in the use of artificial intelligence (AI) within the telecommunication industry in recent years. In network slicing, a key component of 5G that enables network operators to lease their resources to third-party tenants, AI models may be employed in complex tasks, such as short-term resource reservation (STRR). When AI is used to make complex resource management decisions with financial and service quality implications, it is important that these decisions be understood by a human-in-the-loop. In this paper, we apply state-of-the-art techniques from the field of Explainable AI (XAI) to the problem of STRR. Using real-world data to develop an AI model for STRR, we demonstrate how our XAI methodology can be used to explain the real-time decisions of the model, to reveal trends about the model’s general behaviour, as well as aid in the diagnosis of potential faults during the model’s development. In addition, we quantitatively validate the faithfulness of the explanations across an extensive range of XAI metrics to ensure they remain trustworthy and actionable.
Yeo, Guo Feng Anders, Hudson, Irene, Akman, David, Chan, Jeffrey.
2022.
A Simple Framework for XAI Comparisons with a Case Study. 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD). :501—508.
The number of publications related to Explainable Artificial Intelligence (XAI) has increased rapidly this last decade. However, the subjective nature of explainability has led to a lack of consensus regarding commonly used definitions for explainability and with differing problem statements falling under the XAI label resulting in a lack of comparisons. This paper proposes in broad terms a simple comparison framework for XAI methods based on the output and what we call the practical attributes. The aim of the framework is to ensure that everything that can be held constant for the purpose of comparison, is held constant and to ignore many of the subjective elements present in the area of XAI. An example utilizing such a comparison along the lines of the proposed framework is performed on local, post-hoc, model-agnostic XAI algorithms which are designed to measure the feature importance/contribution for a queried instance. These algorithms are assessed on two criteria using synthetic datasets across a range of classifiers. The first is based on selecting features which contribute to the underlying data structure and the second is how accurately the algorithms select the features used in a decision tree path. The results from the first comparison showed that when the classifier was able to pick up the underlying pattern in the model, the LIME algorithm was the most accurate at selecting the underlying ground truth features. The second test returned mixed results with some instances in which the XAI algorithms were able to accurately return the features used to produce predictions, however this result was not consistent.
Culler, Megan J., Morash, Sean, Smith, Brian, Cleveland, Frances, Gentle, Jake.
2021.
A Cyber-Resilience Risk Management Architecture for Distributed Wind. 2021 Resilience Week (RWS). :1–8.
Distributed wind is an electric energy resource segment with strong potential to be deployed in many applications, but special consideration of resilience and cybersecurity is needed to address the unique conditions associated with distributed wind. Distributed wind is a strong candidate to help meet renewable energy and carbon-free energy goals. However, care must be taken as more systems are installed to ensure that the systems are reliable, resilient, and secure. The physical and communications requirements for distributed wind mean that there are unique cybersecurity considerations, but there is little to no existing guidance on best practices for cybersecurity risk management for distributed wind systems specifically. This research develops an architecture for managing cyber risks associated with distributed wind systems through resilience functions. The architecture takes into account the configurations, challenges, and standards for distributed wind to create a risk-focused perspective that considers threats, vulnerabilities, and consequences. We show how the resilience functions of identification, preparation, detection, adaptation, and recovery can mitigate cyber threats. We discuss common distributed wind architectures and interconnections to larger power systems. Because cybersecurity cannot exist independently, the cyber-resilience architecture must consider the system holistically. Finally, we discuss risk assessment recommendations with special emphasis on what sets distributed wind systems apart from other distributed energy resources (DER).
Ajorpaz, Samira Mirbagher, Moghimi, Daniel, Collins, Jeffrey Neal, Pokam, Gilles, Abu-Ghazaleh, Nael, Tullsen, Dean.
2022.
EVAX: Towards a Practical, Pro-active & Adaptive Architecture for High Performance & Security. 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). :1218—1236.
This paper provides an end-to-end solution to defend against known microarchitectural attacks such as speculative execution attacks, fault-injection attacks, covert and side channel attacks, and unknown or evasive versions of these attacks. Current defenses are attack specific and can have unacceptably high performance overhead. We propose an approach that reduces the overhead of state-of-art defenses by over 95%, by applying defenses only when attacks are detected. Many current proposed mitigations are not practical for deployment; for example, InvisiSpec has 27% overhead and Fencing has 74% overhead while protecting against only Spectre attacks. Other mitigations carry similar performance penalties. We reduce the overhead for InvisiSpec to 1.26% and for Fencing to 3.45% offering performance and security for not only spectre attacks but other known transient attacks as well, including the dangerous class of LVI and Rowhammer attacks, as well as covering a large set of future evasive and zero-day attacks. Critical to our approach is an accurate detector that is not fooled by evasive attacks and that can generalize to novel zero-day attacks. We use a novel Generative framework, Evasion Vaccination (EVAX) for training ML models and engineering new security-centric performance counters. EVAX significantly increases sensitivity to detect and classify attacks in time for mitigation to be deployed with low false positives (4 FPs in every 1M instructions in our experiments). Such performance enables efficient and timely mitigations, enabling the processor to automatically switch between performance and security as needed.
Bardia, Vivek, Kumar, C.R.S..
2017.
Process trees & service chains can serve us to mitigate zero day attacks better. 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI). :280—284.
With technology at our fingertips waiting to be exploited, the past decade saw the revolutionizing Human Computer Interactions. The ease with which a user could interact was the Unique Selling Proposition (USP) of a sales team. Human Computer Interactions have many underlying parameters like Data Visualization and Presentation as some to deal with. With the race, on for better and faster presentations, evolved many frameworks to be widely used by all software developers. As the need grew for user friendly applications, more and more software professionals were lured into the front-end sophistication domain. Application frameworks have evolved to such an extent that with just a few clicks and feeding values as per requirements we are able to produce a commercially usable application in a few minutes. These frameworks generate quantum lines of codes in minutes which leaves a contrail of bugs to be discovered in the future. We have also succumbed to the benchmarking in Software Quality Metrics and have made ourselves comfortable with buggy software's to be rectified in future. The exponential evolution in the cyber domain has also attracted attackers equally. Average human awareness and knowledge has also improved in the cyber domain due to the prolonged exposure to technology for over three decades. As the attack sophistication grows and zero day attacks become more popular than ever, the suffering end users only receive remedial measures in spite of the latest Antivirus, Intrusion Detection and Protection Systems installed. We designed a software to display the complete services and applications running in users Operating System in the easiest perceivable manner aided by Computer Graphics and Data Visualization techniques. We further designed a study by empowering the fence sitter users with tools to actively participate in protecting themselves from threats. The designed threats had impressions from the complete threat canvas in some form or other restricted to systems functioning. Network threats and any sort of packet transfer to and from the system in form of threat was kept out of the scope of this experiment. We discovered that end users had a good idea of their working environment which can be used exponentially enhances machine learning for zero day threats and segment the unmarked the vast threat landscape faster for a more reliable output.
Bardia, Vivek, Kumar, CRS.
2017.
End Users Can Mitigate Zero Day Attacks Faster. 2017 IEEE 7th International Advance Computing Conference (IACC). :935—938.
The past decade has shown us the power of cyber space and we getting dependent on the same. The exponential evolution in the domain has attracted attackers and defenders of technology equally. This inevitable domain has led to the increase in average human awareness and knowledge too. As we see the attack sophistication grow the protectors have always been a step ahead mitigating the attacks. A study of the various Threat Detection, Protection and Mitigation Systems revealed to us a common similarity wherein users have been totally ignored or the systems rely heavily on the user inputs for its correct functioning. Compiling the above we designed a study wherein user inputs were taken in addition to independent Detection and Prevention systems to identify and mitigate the risks. This approach led us to a conclusion that involvement of users exponentially enhances machine learning and segments the data sets faster for a more reliable output.
Kao, Chia-Nan, Chang, Yung-Cheng, Huang, Nen-Fu, Salim S, I, Liao, I.-Ju, Liu, Rong-Tai, Hung, Hsien-Wei.
2015.
A predictive zero-day network defense using long-term port-scan recording. 2015 IEEE Conference on Communications and Network Security (CNS). :695—696.
Zero-day attack is a critical network attack. The zero-day attack period (ZDAP) is the period from the release of malware/exploit until a patch becomes available. IDS/IPS cannot effectively block zero-day attacks because they use pattern-based signatures in general. This paper proposes a Prophetic Defender (PD) by which ZDAP can be minimized. Prior to actual attack, hackers scan networks to identify hosts with vulnerable ports. If this port scanning can be detected early, zero-day attacks will become detectable. PD architecture makes use of a honeypot-based pseudo server deployed to detect malicious port scans. A port-scanning honeypot was operated by us in 6 years from 2009 to 2015. By analyzing the 6-year port-scanning log data, we understand that PD is effective for detecting and blocking zero-day attacks. The block rate of the proposed architecture is 98.5%.
Bindschadler, Duane, Hwangpo, Nari, Sarrel, Marc.
2022.
Metrics for Flight Operations: Application to Europa Clipper Tour Selection. 2022 IEEE Aerospace Conference (AERO). :1—12.
Objective measures are ubiquitous in the formulation, design and implementation of deep space missions. Tour durations, flyby altitudes, propellant budgets, power consumption, and other metrics are essential to developing and managing NASA missions. But beyond the simple metrics of cost and workforce, it has been difficult to identify objective, quantitative measures that assist in evaluating choices made during formulation or implementation phases in terms of their impact on flight operations. As part of the development of the Europa Clipper Mission system, a set of operations metrics have been defined along with the necessary design information and software tooling to calculate them. We have applied these methods and metrics to help assess the impact to the flight team on the six options for the Clipper Tour that are currently being vetted for selection in the fall of 2021. To generate these metrics, the Clipper MOS team first designed the set of essential processes by which flight operations will be conducted, using a standard approach and template to identify (among other aspects) timelines for each process, along with their time constraints (e.g., uplinks for sequence execution). Each of the resulting 50 processes is documented in a common format and concurred by stakeholders. Process timelines were converted into generic schedules and workforce-loaded using COTS scheduling software, based on the inputs of the process authors and domain experts. Custom code was generated to create an operations schedule for a specific portion of Clipper's prime mission, with instances of a given process scheduled based on specific timing rules (e.g., process X starts once per week on Thursdays) or relative to mission events (e.g., sequence generation process begins on a Monday, at least three weeks before each Europa closest approach). Over a 5-month period, and for each of six Clipper candidate tours, the result was a 20,000+ line, workforce-loaded schedule that documents all of the process-driven work effort at the level of individual roles, along with a significant portion of the level-of-effort work. Post-processing code calculated the absolute and relative number of work hours during a nominal 5 day / 40 hour work week, the work effort during 2nd and 3rd shift, as well as 1st shift on weekends. The resultant schedules and shift tables were used to generate objective measures that can be related to both human factors and to operational risk and showed that Clipper tours which utilize 6:1 resonant (21.25 day) orbits instead of 4:1 resonant (14.17 day) orbits during the first dozen or so Europa flybys are advantageous to flight operations. A similar approach can be extended to assist missions in more objective assessments of a number of mission issues and trades, including tour selection and spacecraft design for operability.
Chandwani, Ashwin, Dey, Saikat, Mallik, Ayan.
2022.
Parameter-Variation-Tolerant Robust Current Sensorless Control of a Single-Phase Boost PFC. IEEE Journal of Emerging and Selected Topics in Industrial Electronics. 3:933—945.
With the objective to eliminate the input current sensor in a totem-pole boost power factor corrector (PFC) for its low-cost design, a novel discretized sampling-based robust control scheme is proposed in this work. The proposed control methodology proves to be beneficial due to its ease of implementation and its ability to support high-frequency operation, while being able to eliminate one sensor and, thus, enhancing reliability and cost-effectiveness. In addition, detailed closed-loop stability analysis is carried out for the controller in discrete domain to ascertain brisk dynamic operation when subjected to sudden load fluctuations. To establish the robustness of the proposed control scheme, a detailed sensitivity analysis of the closed-loop performance metrics with respect to undesired changes and inherent uncertainty in system parameters is presented in this article. A comparison with the state-of-the-art (SOA) methods is provided, and conclusive results in terms of better dynamic performance are also established. To verify and elaborate on the specifics of the proposed scheme, a detailed simulation study is conducted, and the results show 25% reduction in response time as compared to SOA approaches. A 500-W boost PFC prototype is developed and tested with the proposed control scheme to evaluate and benchmark the system steady-state and dynamic performance. A total harmonic distortion of 1.68% is obtained at the rated load with a resultant power factor of 0.998 (lag), which proves the effectiveness and superiority of the proposed control scheme.
Conference Name: IEEE Journal of Emerging and Selected Topics in Industrial Electronics
Kandaperumal, Gowtham, Pandey, Shikhar, Srivastava, Anurag.
2022.
AWR: Anticipate, Withstand, and Recover Resilience Metric for Operational and Planning Decision Support in Electric Distribution System. IEEE Transactions on Smart Grid. 13:179—190.
With the increasing number of catastrophic weather events and resulting disruption in the energy supply to essential loads, the distribution grid operators’ focus has shifted from reliability to resiliency against high impact, low-frequency events. Given the enhanced automation to enable the smarter grid, there are several assets/resources at the disposal of electric utilities to enhances resiliency. However, with a lack of comprehensive resilience tools for informed operational decisions and planning, utilities face a challenge in investing and prioritizing operational control actions for resiliency. The distribution system resilience is also highly dependent on system attributes, including network, control, generating resources, location of loads and resources, as well as the progression of an extreme event. In this work, we present a novel multi-stage resilience measure called the Anticipate-Withstand-Recover (AWR) metrics. The AWR metrics are based on integrating relevant ‘system characteristics based factors’, before, during, and after the extreme event. The developed methodology utilizes a pragmatic and flexible approach by adopting concepts from the national emergency preparedness paradigm, proactive and reactive controls of grid assets, graph theory with system and component constraints, and multi-criteria decision-making process. The proposed metrics are applied to provide decision support for a) the operational resilience and b) planning investments, and validated for a real system in Alaska during the entirety of the event progression.
Andersen, Erik, Chiarandini, Marco, Hassani, Marwan, Jänicke, Stefan, Tampakis, Panagiotis, Zimek, Arthur.
2022.
Evaluation of Probability Distribution Distance Metrics in Traffic Flow Outlier Detection. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :64—69.
Recent approaches have proven the effectiveness of local outlier factor-based outlier detection when applied over traffic flow probability distributions. However, these approaches used distance metrics based on the Bhattacharyya coefficient when calculating probability distribution similarity. Consequently, the limited expressiveness of the Bhattacharyya coefficient restricted the accuracy of the methods. The crucial deficiency of the Bhattacharyya distance metric is its inability to compare distributions with non-overlapping sample spaces over the domain of natural numbers. Traffic flow intensity varies greatly, which results in numerous non-overlapping sample spaces, rendering metrics based on the Bhattacharyya coefficient inappropriate. In this work, we address this issue by exploring alternative distance metrics and showing their applicability in a massive real-life traffic flow data set from 26 vital intersections in The Hague. The results on these data collected from 272 sensors for more than two years show various advantages of the Earth Mover's distance both in effectiveness and efficiency.
Queirós, Mauro, Pereira, João Lobato, Leiras, Valdemar, Meireles, José, Fonseca, Jaime, Borges, João.
2022.
Work cell for assembling small components in PCB. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—4.
Flexibility and speed in the development of new industrial machines are essential factors for the success of capital goods industries. When assembling a printed circuit board (PCB), since all the components are surface mounted devices (SMD), the whole process is automatic. However, in many PCBs, it is necessary to place components that are not SMDs, called pin through hole components (PTH), having to be inserted manually, which leads to delays in the production line. This work proposes and validates a prototype work cell based on a collaborative robot and vision systems whose objective is to insert these components in a completely autonomous or semi-autonomous way. Different tests were made to validate this work cell, showing the correct implementation and the possibility of replacing the human worker on this PCB assembly task.
Jabrayilzade, Elgun, Evtikhiev, Mikhail, Tüzün, Eray, Kovalenko, Vladimir.
2022.
Bus Factor in Practice. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :97—106.
Bus factor is a metric that identifies how resilient is the project to the sudden engineer turnover. It states the minimal number of engineers that have to be hit by a bus for a project to be stalled. Even though the metric is often discussed in the community, few studies consider its general relevance. Moreover, the existing tools for bus factor estimation focus solely on the data from version control systems, even though there exists other channels for knowledge generation and distribution. With a survey of 269 engineers, we find that the bus factor is perceived as an important problem in collective development, and determine the highest impact channels of knowledge generation and distribution in software development teams. We also propose a multimodal bus factor estimation algorithm that uses data on code reviews and meetings together with the VCS data. We test the algorithm on 13 projects developed at JetBrains and compared its results to the results of the state-of-the-art tool by Avelino et al. against the ground truth collected in a survey of the engineers working on these projects. Our algorithm is slightly better in terms of both predicting the bus factor as well as key developers compared to the results of Avelino et al. Finally, we use the interviews and the surveys to derive a set of best practices to address the bus factor issue and proposals for the possible bus factor assessment tool.