Visible to the public Biblio

Filters: Keyword is critical missions  [Clear All Filters]
2019-02-14
Leemaster, J., Vai, M., Whelihan, D., Whitman, H., Khazan, R..  2018.  Functionality and Security Co-Design Environment for Embedded Systems. 2018 IEEE High Performance Extreme Computing Conference (HPEC). :1-5.

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus equally on functionality and security in both hardware and software development. For critical missions, these systems must be entrusted to perform their intended functions, prevent attacks, and even operate with resilience under attacks. The processor in a critical system must thus provide not only a root of trust, but also a foundation to monitor mission functions, detect anomalies, and perform recovery. We have developed a Lincoln Asymmetric Multicore Processing (LAMP) architecture, which mitigates adversarial cyber effects with separation and cryptography and provides a foundation to build a resilient embedded system. We will describe a design environment that we have created to enable the co-design of functionality and security for mission assurance.

2018-09-12
Yousef, K. M. A., AlMajali, A., Hasan, R., Dweik, W., Mohd, B..  2017.  Security risk assessment of the PeopleBot mobile robot research platform. 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :1–5.

Nowadays, robots are widely ubiquitous and integral part in our daily lives, which can be seen almost everywhere in industry, hospitals, military, etc. To provide remote access and control, usually robots are connected to local network or to the Internet through WiFi or Ethernet. As such, it is of great importance and of a critical mission to maintain the safety and the security access of such robots. Security threats may result in completely preventing the access and control of the robot. The consequences of this may be catastrophic and may cause an immediate physical damage to the robot. This paper aims to present a security risk assessment of the well-known PeopleBot; a mobile robot platform from Adept MobileRobots Company. Initially, we thoroughly examined security threats related to remote accessing the PeopleBot robot. We conducted an impact-oriented analysis approach on the wireless communication medium; the main method considered to remotely access the PeopleBot robot. Numerous experiments using SSH and server-client applications were conducted, and they demonstrated that certain attacks result in denying remote access service to the PeopleBot robot. Consequently and dangerously the robot becomes unavailable. Finally, we suggested one possible mitigation and provided useful conclusions to raise awareness of possible security threats on the robotic systems; especially when the robots are involved in critical missions or applications.