Baruah, Barnana, Dhal, Subhasish.
2021.
An Authenticated Key Agreement Scheme for Secure Communication in Smart Grid. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). :447—455.
Rapid development of wireless technologies has driven the evolution of smart grid application. In smart grid, authentication plays an important role for secure communication between smart meter and service provider. Hence, the design of secure authenticated key agreement schemes has received significant attention from researchers. In these schemes, a trusted third party directly participates in key agreement process. Although, this third party is assumed as trusted, however we cannot reject the possibility that being a third party, it can also be malicious. In the existing works, either the established session key is revealed to the agents of a trusted third party, or a trusted third party agent can impersonate the smart meter and establish a valid session key with the service provider, which is likely to cause security vulnerabilities. Therefore, there is a need to design a secure authentication scheme so that only the deserving entities involved in the communication can establish and know the session key. This paper proposes a new secure authenticated key agreement scheme for smart grid considering the fact that the third party can also be malicious. The security of the proposed scheme has been thoroughly evaluated using an adversary model. Correctness of the scheme has been analyzed using the broadly accepted Burrows-Abadi-Needham (BAN) Logic. In addition, the formal security verification of the proposed scheme has been performed using the widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) simulation tool. Results of this simulation confirm that the proposed scheme is safe. Detailed security analysis shows the robustness of the scheme against various known attacks. Moreover, the comparative performance study of the proposed scheme with other relevant schemes is presented to demonstrate its practicality.
TianYu, Pang, Yan, Song, QuanJiang, Shen.
2021.
Research on Security Threat Assessment for Power IOT Terminal Based on Knowledge Graph. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:1717—1721.
Due to the large number of terminal nodes and wide deployment of power IOT, it is vulnerable to attacks such as physical hijacking, communication link theft and replay. In order to sense and measure the security risks and threats of massive power IOT terminals in real time, a security threat assessment for power IOT terminals based on knowledge graph was proposed. Firstly, the basic data, operation data and alarm threat data of power IOT terminal equipment are extracted and correlated, and the power IOT terminal based on knowledge graph is constructed. Then, the real-time monitoring data of the power IOT terminal is preprocessed. Based on the knowledge graph of the power IOT terminal, the safety analysis and operation analysis of the terminal are carried out, and the threat index of the power IOT terminal is perceived in real time. Finally, security operation and maintenance personnel make disposal decisions on the terminals according to the threat index of power IOT terminals to ensure the safe and stable operation of power IOT terminal nodes. The experimental results show that compared with the traditional IPS, the method can effectively detect the security threat of the power IOT terminal and reduce the alarm vulnerability rate.
Tahirovic, Alma Ademovic, Angeli, David, Strbac, Goran.
2021.
A Complex Network Approach to Power System Vulnerability Analysis based on Rebalance Based Flow Centrality. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01—05.
The study of networks is an extensively investigated field of research, with networks and network structure often encoding relationships describing certain systems or processes. Critical infrastructure is understood as being a structure whose failure or damage has considerable impact on safety, security and wellbeing of society, with power systems considered a classic example. The work presented in this paper builds on the long-lasting foundations of network and complex network theory, proposing an extension in form of rebalance based flow centrality for structural vulnerability assessment and critical component identification in adaptive network topologies. The proposed measure is applied to power system vulnerability analysis, with performance demonstrated on the IEEE 30-, 57- and 118-bus test system, outperforming relevant methods from the state-of-the-art. The proposed framework is deterministic (guaranteed), analytically obtained (interpretable) and generalizes well with changing network parameters, providing a complementary tool to power system vulnerability analysis and planning.
Pan, Huan, Li, Xiao, Cao, Ruijia, Na, Chunning.
2021.
Power Grid Nodal Vulnerability Analysis Combining Topology and State Information. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). :2546—2551.
The security of the power grid is the first element of its operation. This paper aims at finding the vulnerability nodes in the power grid to prevent it from being destroyed. A novel comprehensive vulnerability index is proposed to the singleness of evaluation indicators for existing literature by integrating the power grid's topology information and operating state. Taking IEEE-118 as an example, the simulation analysis proves that the proposed vulnerability index has certain discriminative advantages and the best weighting factor is obtained through correlation analysis.
Liu, Wei, Zhao, Tao.
2021.
Vulnerability Assessment and Attack Simulation of Power IoT Based on the Attractiveness of Equipment Assets. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:1246—1250.
With the rapid development of the electric power Internet-of-Things (power IoT) technology and the widespread use of general-purpose software, hardware and network facilities, the power IoT has become more and more open, which makes the traditional power system face new cyber security threats. In order to find the vulnerable device nodes and attack links in the power IoT system, this paper studies a set of attack path calculation methods and vulnerability node discovery algorithms, which can construct a power IoT attack simulation program based on the value of equipment assets and information attributes. What’s more, this paper has carried on the example analysis and verification on the improved IEEE RBTS Bus 2 system. Based on the above research plan, this paper finally developed a set of power IoT attack simulation tool based on distribution electronic stations, which can well find the vulnerable devices in the system.
Shu, ZhiMeng, Liu, YongGuang, Wang, HuiNan, Sun, ChaoLiang, He, ShanShan.
2021.
Research on the feasibility technology of Internet of things terminal security monitoring. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :831—836.
As an important part of the intelligent measurement system, IOT terminal is in the “edge” layer of the intelligent measurement system architecture. It is the key node of power grid management and cloud fog integration. Its information security is the key to the construction of the security system of intelligent measurement, and the security link between the cloud and sensor measurement. With the in-depth integration of energy flow, information flow and business flow, and the in-depth application of digital technologies such as cloud computing, big data, internet of things, mobile Internet and artificial intelligence, the transformation and development of power system to digital and high-quality digital power grid has been accelerated. As a typical multi-dimensional complex system combining physical space and information space, the security threats and risks faced by the digital grid are more complex. The security risks in the information space will transfer the hazards to the power system and physical space. The Internet of things terminal is facing a more complex situation in the security field than before. This paper studies the feasibility of the security monitoring technology of the Internet of things terminal, in order to reduce the potential risks, improve the safe operation environment of the Internet of things terminal and improve the level of the security protection of the Internet of things terminal. One is to study the potential security problems of Internet of things terminal, and put forward the technical specification of security protection of Internet of things terminal. The second is to study the Internet of things terminal security detection technology, research and develop terminal security detection platform, and realize the unified detection of terminal security protection. The third is to study the security monitoring technology of the Internet of things terminal, develop the security monitoring system of the Internet of things terminal, realize the terminal security situation awareness and threat identification, timely discover the terminal security vulnerabilities, and ensure the stable and safe operation of the terminal and related business master station.
Luo, Weifeng, Xiao, Liang.
2021.
Reinforcement Learning Based Vulnerability Analysis of Data Injection Attack for Smart Grids. 2021 40th Chinese Control Conference (CCC). :6788—6792.
Smart grids have to protect meter measurements against false data injection attacks. By modifying the meter measurements, the attacker misleads the control decisions of the control center, which results in physical damages of power systems. In this paper, we propose a reinforcement learning based vulnerability analysis scheme for data injection attack without relying on the power system topology. This scheme enables the attacker to choose the data injection attack vector based on the meter measurements, the power system status, the previous injected errors and the number of meters to compromise. By combining deep reinforcement learning with prioritized experience replay, the proposed scheme more frequently replays the successful vulnerability detection experiences while bypassing the bad data detection, which is able to accelerate the learning speed. Simulation results based on the IEEE 14 bus system show that this scheme increases the probability of successful vulnerability detection and reduce the number of meters to compromise compared with the benchmark scheme.
Fuquan, Huang, Zhiwei, Liu, Jianyong, Zhou, Guoyi, Zhang, Likuan, Gong.
2021.
Vulnerability Analysis of High-Performance Transmission and Bearer Network of 5G Smart Grid Based on Complex Network. 2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN). :292—297.
5G smart grid applications rely on its high-performance transmission and bearer network. With the help of complex network theory, this paper first analyzes the complex network characteristic parameters of 5G smart grid, and explains the necessity and supporting significance of network vulnerability analysis for efficient transmission of 5G network. Then the node importance analysis algorithm based on node degree and clustering coefficient (NIDCC) is proposed. According to the results of simulation analysis, the power network has smaller path length and higher clustering coefficient in terms of static parameters, which indicates that the speed and breadth of fault propagation are significantly higher than that of random network. It further shows the necessity of network vulnerability analysis. By comparing with the other two commonly used algorithms, we can see that NIDCC algorithm can more accurately estimate and analyze the weak links of the network. It is convenient to carry out the targeted transformation of the power grid and the prevention of blackout accidents.
Zhou, Runfu, Peng, Minfang, Gao, Xingle.
2021.
Vulnerability Assessment of Power Cyber-Physical System Considering Nodes Load Capacity. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1438—1441.
The power cyber-physical system combines the cyber network with the traditional electrical power network, which can monitor and control the operation of the power grid stably and efficiently. Since the system's structure and function is complicated and large, it becomes fragile as a result. Therefore, establishing a reasonable and effective CPS model and discussing its vulnerability performance under external attacks is essential and vital for power grid operation. This paper uses the theory of complex networks to establish a independent system model by IEEE-118-node power network and 200-node scale-free information network, introducing information index to identify and sort important nodes in the network, and then cascade model of the power cyber-physical system based on the node load capacity is constructed and the vulnerability assessment analysis is carried out. The simulation shows that the disintegration speed of the system structure under deliberate attacks is faster than random attacks; And increasing the node threshold can effectively inhibit the propagation of failure.
Chen, Keren, Zheng, Nan, Cai, Qiyuan, Li, Yinan, Lin, Changyong, Li, Yuanfei.
2021.
Cyber-Physical Power System Vulnerability Analysis Based on Complex Network Theory. 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). :482—486.
The vulnerability assessment of the cyber-physical power system based on complex network theory is applied in this paper. The influence of the power system statistics upon the system vulnerability is studied based on complex network theory. The electrical betweenness is defined to suitably describe the power system characteristics. The real power systems are utilized as examples to analyze the distribution of the degree and betweenness of the power system as a complex network. The topology model of the cyber-physical power system is formed, and the static analysis is implemented to the study of the cyber-physical power system structural vulnerability. The IEEE 300 bus test system is selected to verify the model.