Biblio
This paper proposes a software framework to embed the unit commitment problem into a power system dynamic simulator. A sub-hourly, mixed-integer linear programming Security Constrained Unit Commitment (SCUC) with a rolling horizon is utilized to account for the variations of the net load of the system. The SCUC is then included into time domain simulations to study the impact of the net-load variability and uncertainty on the dynamic behavior of the system using different scheduling time periods. A case study based on the 39-bus system illustrates the features of the proposed software framework.
Virtual platforms provide a full hardware/software platform to study device limitations in an early stages of the design flow and to develop software without requiring a physical implementation. This paper describes the development process of a virtual platform for Deep Packet Inspection (DPI) hardware accelerators by using Transaction Level Modeling (TLM). We propose two DPI architectures oriented to System-on-Chip FPGA. The first architecture, CPU-DMA based architecture, is a hybrid CPU/FPGA where the packets are filtered in the software domain. The second architecture, Hardware-IP based architecture, is mainly implemented in the hardware domain. We have created two virtual platforms and performed the simulation, the debugging and the analysis of the hardware/software features, in order to compare results for both architectures.
We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.
In this paper, a new approach based on Sub-sampled Inverse Fast Fourier Transform (SSIFFT) for efficiently acquiring compressive measurements is proposed, which is motivated by random filter based method and sub-sampled FFT. In our approach, to start with, we multiply the FFT of input signal and that of random-tap FIR filter in frequency domain and then utilize SSIFFT to obtain compressive measurements in the time domain. It requires less data storage and computation than the existing methods based on random filter. Moreover, it is suitable for both one-dimensional and two-dimensional signals. Experimental results show that the proposed approach is effective and efficient.
This paper presents a novel and efficient audio signal recognition algorithm with limited computational complexity. As the audio recognition system will be used in real world environment where background noises are high, conventional speech recognition techniques are not directly applicable, since they have a poor performance in these environments. So here, we introduce a new audio recognition algorithm which is optimized for mechanical sounds such as car horn, telephone ring etc. This is a hybrid time-frequency approach which makes use of acoustic fingerprint for the recognition of audio signal patterns. The limited computational complexity is achieved through efficient usage of both time domain and frequency domain in two different processing phases, detection and recognition respectively. And the transition between these two phases is carried out through a finite state machine(FSM)model. Simulation results shows that the algorithm effectively recognizes audio signals within a noisy environment.
A slow-paced persistent attack, such as slow worm or bot, can bewilder the detection system by slowing down their attack. Detecting such attacks based on traditional anomaly detection techniques may yield high false alarm rates. In this paper, we frame our problem as detecting slow-paced persistent attacks from a time series obtained from network trace. We focus on time series spectrum analysis to identify peculiar spectral patterns that may represent the occurrence of a persistent activity in the time domain. We propose a method to adaptively detect slow-paced persistent attacks in a time series and evaluate the proposed method by conducting experiments using both synthesized traffic and real-world traffic. The results show that the proposed method is capable of detecting slow-paced persistent attacks even in a noisy environment mixed with legitimate traffic.
Wireless channel reciprocity can be successfully exploited as a common source of randomness for the generation of a secret key by two legitimate users willing to achieve confidential communications over a public channel. This paper presents an analytical framework to investigate the theoretical limits of secret-key generation when wireless multi-dimensional Gaussian channels are used as source of randomness. The intrinsic secrecy content of wide-sense stationary wireless channels in frequency, time and spatial domains is derived through asymptotic analysis as the number of observations in a given domain tends to infinity. Some significant case studies are presented where single and multiple antenna eavesdroppers are considered. In the numerical results, the role of signal-to-noise ratio, spatial correlation, frequency and time selectivity is investigated.
The vulnerability analysis is vital for safely running power grids. The simultaneous attack, which applies multiple failures simultaneously, does not consider the time domain in applying failures, and is limited to find unknown vulnerabilities of power grid networks. In this paper, we discover a new attack scenario, called the sequential attack, in which the failures of multiple network components (i.e., links/nodes) occur at different time. The sequence of such failures can be carefully arranged by attackers in order to maximize attack performances. This attack scenario leads to a new angle to analyze and discover vulnerabilities of grid networks. The IEEE 39 bus system is adopted as test benchmark to compare the proposed attack scenario with the existing simultaneous attack scenario. New vulnerabilities are found. For example, the sequential failure of two links, e.g., links 26 and 39 in the test benchmark, can cause 80% power loss, whereas the simultaneous failure of them causes less than 10% power loss. In addition, the sequential attack is demonstrated to be statistically stronger than the simultaneous attack. Finally, several metrics are compared and discussed in terms of whether they can be used to sharply reduce the search space for identifying strong sequential attacks.