Visible to the public Biblio

Filters: Keyword is time-domain analysis  [Clear All Filters]
2022-09-09
Lin, Yier, Tian, Yin.  2021.  The Short-Time Fourier Transform based WiFi Human Activity Classification Algorithm. 2021 17th International Conference on Computational Intelligence and Security (CIS). :30—34.
The accurate classification of WiFi-based activity patterns is still an open problem and is critical to detect behavior for non-visualization applications. This paper proposes a novel approach that uses WiFi-based IQ data and short-time Fourier transform (STFT) time-frequency images to automatically and accurately classify human activities. The offsets features, calculated from time-domain values and one-dimensional principal component analysis (1D-PCA) values and two-dimensional principal component analysis (2D-PCA) values, are applied as features to input the classifiers. The machine learning methods such as the bagging, boosting, support vector machine (SVM), random forests (RF) as the classifier to output the performance. The experimental data validate our proposed method with 15000 experimental samples from five categories of WiFi signals (empty, marching on the spot, rope skipping, both arms rotating;singlearm rotating). The results show that the method companying with the RF classifier surpasses the approach with alternative classifiers on classification performance and finally obtains a 62.66% classification rate, 85.06% mean accuracy, and 90.67% mean specificity.
2021-11-08
Zhu, Qianqian, Li, Yue, He, Hongchang, Huang, Gang.  2020.  Cross-term suppression of multi-component signals based on improved STFT-Wigner. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1082–1086.
Cross-term interference exists in the WVD of multi-component signals in time-frequency analysis, and the STFT is limited by Heisenberg uncertainty criterion. For multicomponent signals under noisy background, this paper proposes an improved STFT-Wigner algorithm, which establishes a threshold based on the exponential multiplication result compared to the original algorithm, so as to weaken the cross term and reduce the impact of noise on the signal, and improve the time-frequency aggregation of the signal. Simulation results show that the improved algorithm has higher time-frequency aggregation than other methods. Similarly, for cross-term suppression, our method is superior to many other TF analysis methods in low signal-to-noise ratio (SNR) environment.
Tang, Nan, Zhou, Wanting, Li, Lei, Yang, Ji, Li, Rui, He, Yuanhang.  2020.  Hardware Trojan Detection Method Based on the Frequency Domain Characteristics of Power Consumption. 2020 13th International Symposium on Computational Intelligence and Design (ISCID). :410–413.
Hardware security has long been an important issue in the current IC design. In this paper, a hardware Trojan detection method based on frequency domain characteristics of power consumption is proposed. For some HTs, it is difficult to detect based on the time domain characteristics, these types of hardware Trojan can be analyzed in the frequency domain, and Mahalanobis distance is used to classify designs with or without HTs. The experimental results demonstrate that taking 10% distance as the criterion, the hardware Trojan detection results in the frequency domain have almost no failure cases in all the tested designs.
Maruthi, Vangalli, Balamurugan, Karthigha, Mohankumar, N..  2020.  Hardware Trojan Detection Using Power Signal Foot Prints in Frequency Domain. 2020 International Conference on Communication and Signal Processing (ICCSP). :1212–1216.
This work proposes a plausible detection scheme for Hardware Trojan (HT) detection in frequency domain analysis. Due to shrinking technology every node consumes low power values (in the range of $μ$W) which are difficult to manipulate for HT detection using conventional methods. The proposed method utilizes the time domain power signals which is converted to frequency domain that represents the implausible signals and analyzed. The precision of HT detection is found to be increased because of the magnified power values in frequency domain. This work uses ISCAS89 bench mark circuits for conducting experiments. In this, the wide range of power values that spans from 695 $μ$W to 22.3 $μ$W are observed in frequency domain whereas the respective powers in time domain have narrow span of 2.29 $μ$W to 0.783 $μ$W which is unconvincing. This work uses the wide span of power values to identify HT and observed that the mid-band of frequencies have larger footprints than the side bands. These methods intend to help the designers in easy identification of HT even of single gate events.
2021-06-01
Shang, X., Shi, L.N., Niu, J.B., Xie, C.Q..  2020.  Efficient Mie Resonance of Metal-masked Titanium Dioxide Nanopillars. 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). :171—173.
Here, we propose a simple design approach based on metal-masked titanium dioxide nanopillars, which can realize strong Mie resonance in metasurfaces and enables light confinement within itself over the range of visible wavelengths. By selecting the appropriate period and diameter of individual titanium dioxide nanopillars, the coincidence of resonance peak positions derived from excited electric and magnetic dipoles can be achived. And the optical properties in this design have been investigated with the Finite-Difference Time-Domain(FDTD) solutions.
2020-11-20
Yogarathinam, A., Chaudhuri, N. R..  2019.  Wide-Area Damping Control Using Multiple DFIG-Based Wind Farms Under Stochastic Data Packet Dropouts. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—1.
Data dropouts in communication network can have a significant impact on wide-area oscillation damping control of a smart power grid with large-scale deployment of distributed and networked phasor measurement units and wind energy resources. Remote feedback signals sent through communication channels encounter data dropout, which is represented by the Gilbert-Elliott model. An observer-driven reduced copy (ORC) approach is presented, which uses the knowledge of the nominal system dynamics during data dropouts to improve the damping performance where conventional feedback would suffer. An expression for the expectation of the bound on the error norm between the actual and the estimated states relating uncertainties in the cyber system due to data dropout and physical system due to change in operating conditions is also derived. The key contribution comes from the analytical derivation of the impact of coupling between the cyber and the physical layer on ORC performance. Monte Carlo simulation is performed to calculate the dispersion of the error bound. Nonlinear time-domain simulations demonstrate that the ORC produces significantly better performance compared to conventional feedback under higher data drop situations.
2020-07-16
Kërçi, Taulant, Milano, Federico.  2019.  A Framework to embed the Unit Commitment Problem into Time Domain Simulations. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—5.

This paper proposes a software framework to embed the unit commitment problem into a power system dynamic simulator. A sub-hourly, mixed-integer linear programming Security Constrained Unit Commitment (SCUC) with a rolling horizon is utilized to account for the variations of the net load of the system. The SCUC is then included into time domain simulations to study the impact of the net-load variability and uncertainty on the dynamic behavior of the system using different scheduling time periods. A case study based on the 39-bus system illustrates the features of the proposed software framework.

2020-07-03
León, Raquel, Domínguez, Adrián, Carballo, Pedro P., Núñez, Antonio.  2019.  Deep Packet Inspection Through Virtual Platforms using System-On-Chip FPGAs. 2019 XXXIV Conference on Design of Circuits and Integrated Systems (DCIS). :1—6.

Virtual platforms provide a full hardware/software platform to study device limitations in an early stages of the design flow and to develop software without requiring a physical implementation. This paper describes the development process of a virtual platform for Deep Packet Inspection (DPI) hardware accelerators by using Transaction Level Modeling (TLM). We propose two DPI architectures oriented to System-on-Chip FPGA. The first architecture, CPU-DMA based architecture, is a hybrid CPU/FPGA where the packets are filtered in the software domain. The second architecture, Hardware-IP based architecture, is mainly implemented in the hardware domain. We have created two virtual platforms and performed the simulation, the debugging and the analysis of the hardware/software features, in order to compare results for both architectures.

2020-04-24
de Rooij, Sjors, Laguna, Antonio Jarquin.  2019.  Modelling of submerged oscillating water columns with mass transfer for wave energy extraction. 2019 Offshore Energy and Storage Summit (OSES). :1—9.
Oscillating-water-column (OWC) devices are a very important type of wave energy converters which have been extensively studied over the years. Although most designs of OWC are based on floating or fixed structures exposed above the surface level, little is known from completely submerged systems which can benefit from reduced environmental loads and a simplified structural design. The submerged type of resonant duct consists of two OWCs separated by a weir and air chamber instead of the commonly used single column. Under conditions close to resonance, water flows from the first column into the second one, resulting in a positive flow through the system from which energy can be extracted by a hydro turbine. While existing work has looked at the study of the behaviour of one OWC, this paper addresses the dynamic interaction between the two water columns including the mass transfer mechanism as well as the associated change of momentum. A numerical time-domain model is used to obtain some initial results on the performance and response of the system for different design parameters. The model is derived from 1D conservation of mass and momentum equations, including hydrodynamic effects, adiabatic air compressibility and turbine induced damping. Preliminary results indicate that the mass transfer has an important effect both on the resonance amplification and on the phase between the motion of the two columns. Simulation results are presented for the system performance over several weir heights and regular wave conditions. Further work will continue in design optimization and experimental validation of the proposed model.
2019-01-16
Yang, H. F., Hu, X. K., Sievers, S., Bohnert, T., Costa, J. D., Tarcquzzaman, M., Ferreira, R., Bieler, M., Schumacher, H. W..  2018.  Coherent Control of Acoustic-Wave-Induced Magnetization Dynamics in Magnetic Tunnel Junctions. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). :1–2.
We report time-domain measurements of acoustic-wave-induced magnetization dynamics in magnetic tunnel junctions. The acoustic pulses are generated by femtosecond laser excitation and interact with the magnetization through magnetoelastic coupling. The induced magnetization precession is not only dependent on the externally applied magnetic field, but also on the laser excitation position. The presented method even allows us to coherently control the precession using two laser pulses at various magnetic fields and excitation positions.
2017-03-08
Poveda, J. I., Teel, A. R..  2015.  Event-triggered based on-line optimization for a class of nonlinear systems. 2015 54th IEEE Conference on Decision and Control (CDC). :5474–5479.

We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.

2017-02-21
Liang Zhongyin, Huang Jianjun, Huang Jingxiong.  2015.  "Sub-sampled IFFT based compressive sampling". TENCON 2015 - 2015 IEEE Region 10 Conference. :1-4.

In this paper, a new approach based on Sub-sampled Inverse Fast Fourier Transform (SSIFFT) for efficiently acquiring compressive measurements is proposed, which is motivated by random filter based method and sub-sampled FFT. In our approach, to start with, we multiply the FFT of input signal and that of random-tap FIR filter in frequency domain and then utilize SSIFFT to obtain compressive measurements in the time domain. It requires less data storage and computation than the existing methods based on random filter. Moreover, it is suitable for both one-dimensional and two-dimensional signals. Experimental results show that the proposed approach is effective and efficient.

2015-05-04
Alias T, E., Naveen, N., Mathew, D..  2014.  A Novel Acoustic Fingerprint Method for Audio Signal Pattern Detection. Advances in Computing and Communications (ICACC), 2014 Fourth International Conference on. :64-68.

This paper presents a novel and efficient audio signal recognition algorithm with limited computational complexity. As the audio recognition system will be used in real world environment where background noises are high, conventional speech recognition techniques are not directly applicable, since they have a poor performance in these environments. So here, we introduce a new audio recognition algorithm which is optimized for mechanical sounds such as car horn, telephone ring etc. This is a hybrid time-frequency approach which makes use of acoustic fingerprint for the recognition of audio signal patterns. The limited computational complexity is achieved through efficient usage of both time domain and frequency domain in two different processing phases, detection and recognition respectively. And the transition between these two phases is carried out through a finite state machine(FSM)model. Simulation results shows that the algorithm effectively recognizes audio signals within a noisy environment.

2015-05-01
Chen, L.M., Hsiao, S.-W., Chen, M.C., Liao, W..  2014.  Slow-Paced Persistent Network Attacks Analysis and Detection Using Spectrum Analysis. Systems Journal, IEEE. PP:1-12.

A slow-paced persistent attack, such as slow worm or bot, can bewilder the detection system by slowing down their attack. Detecting such attacks based on traditional anomaly detection techniques may yield high false alarm rates. In this paper, we frame our problem as detecting slow-paced persistent attacks from a time series obtained from network trace. We focus on time series spectrum analysis to identify peculiar spectral patterns that may represent the occurrence of a persistent activity in the time domain. We propose a method to adaptively detect slow-paced persistent attacks in a time series and evaluate the proposed method by conducting experiments using both synthesized traffic and real-world traffic. The results show that the proposed method is capable of detecting slow-paced persistent attacks even in a noisy environment mixed with legitimate traffic.

Pasolini, G., Dardari, D..  2014.  Secret key generation in correlated multi-dimensional Gaussian channels. Communications (ICC), 2014 IEEE International Conference on. :2171-2177.

Wireless channel reciprocity can be successfully exploited as a common source of randomness for the generation of a secret key by two legitimate users willing to achieve confidential communications over a public channel. This paper presents an analytical framework to investigate the theoretical limits of secret-key generation when wireless multi-dimensional Gaussian channels are used as source of randomness. The intrinsic secrecy content of wide-sense stationary wireless channels in frequency, time and spatial domains is derived through asymptotic analysis as the number of observations in a given domain tends to infinity. Some significant case studies are presented where single and multiple antenna eavesdroppers are considered. In the numerical results, the role of signal-to-noise ratio, spatial correlation, frequency and time selectivity is investigated.

Yihai Zhu, Jun Yan, Yufei Tang, Yan Sun, Haibo He.  2014.  The sequential attack against power grid networks. Communications (ICC), 2014 IEEE International Conference on. :616-621.

The vulnerability analysis is vital for safely running power grids. The simultaneous attack, which applies multiple failures simultaneously, does not consider the time domain in applying failures, and is limited to find unknown vulnerabilities of power grid networks. In this paper, we discover a new attack scenario, called the sequential attack, in which the failures of multiple network components (i.e., links/nodes) occur at different time. The sequence of such failures can be carefully arranged by attackers in order to maximize attack performances. This attack scenario leads to a new angle to analyze and discover vulnerabilities of grid networks. The IEEE 39 bus system is adopted as test benchmark to compare the proposed attack scenario with the existing simultaneous attack scenario. New vulnerabilities are found. For example, the sequential failure of two links, e.g., links 26 and 39 in the test benchmark, can cause 80% power loss, whereas the simultaneous failure of them causes less than 10% power loss. In addition, the sequential attack is demonstrated to be statistically stronger than the simultaneous attack. Finally, several metrics are compared and discussed in terms of whether they can be used to sharply reduce the search space for identifying strong sequential attacks.