Visible to the public Biblio

Found 112 results

Filters: Keyword is Government  [Clear All Filters]
2022-04-01
Medeiros, Nadia, Ivaki, Naghmeh, Costa, Pedro, Vieira, Marco.  2021.  An Empirical Study On Software Metrics and Machine Learning to Identify Untrustworthy Code. 2021 17th European Dependable Computing Conference (EDCC). :87—94.
The increasingly intensive use of software systems in diverse sectors, especially in business, government, healthcare, and critical infrastructures, makes it essential to deliver code that is secure. In this work, we present two sets of experiments aiming at helping developers to improve software security from the early development stages. The first experiment is focused on using software metrics to build prediction models to distinguish vulnerable from non-vulnerable code. The second experiment studies the hypothesis of developing a consensus-based decision-making approach on top of several machine learning-based prediction models, trained using software metrics data to categorize code units with respect to their security. Such categories suggest a priority (ranking) of software code units based on the potential existence of security vulnerabilities. Results show that software metrics do not constitute sufficient evidence of security issues and cannot effectively be used to build a prediction model to distinguish vulnerable from non-vulnerable code. However, with a consensus-based decision-making approach, it is possible to classify code units from a security perspective, which allows developers to decide (considering the criticality of the system under development and the available resources) which parts of the software should be the focal point for the detection and removal of security vulnerabilities.
2022-02-09
Deng, Han, Wang, Zhechon, Zhang, Yazhen.  2021.  Overview of Privacy Protection Data Release Anonymity Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :151–156.
The collection of digital information by governments, companies and individuals creates tremendous opportunities for knowledge and information-based decision-making. Driven by mutual benefit and laws and regulations, there is a need for data exchange and publication between all parties. However, data in its original form usually contains sensitive information about individuals and publishing such data would violate personal privacy. Privacy Protection Data Distribution (PPDP) provides methods and tools to release useful information while protecting data privacy. In recent years, PPDP has received extensive attention from the research community, and many solutions have been proposed for different data release scenarios. How to ensure the availability of data under the premise of protecting user privacy is the core problem to be solved in this field. This paper studies the existing achievements of privacy protection data release anonymity technology, focusing on the existing anonymity technology in three aspects of high-dimensional, high-deficiency, and complex relational data, and analyzes and summarizes them.
2022-02-04
Xie, Jiagui, Li, Zhiping, Gao, Likun, Nie, Fanjie.  2021.  A Supply Chain Data Supervision System Based on Parent-Children Blockchain Structure. 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT). :833–842.
In the context of Industrial Internet logo analysis, this paper analyzes the feasibility and outstanding advantages of the blockchain technology applied to supply chain data supervision combining the pain spots of traditional supply chain management system and the technical superiority. Although blockchain technology has uprooted some deep-entrenched problems of supply chain data management system, it brings new issues to government supervision in the meanwhile. Upon the analysis of current development and the new problems of blockchain-based supply chain data management system, a new parent-children blockchain-based supply chain data supervision system is proposed, which targets to overcome the dilemma faced by the governmental regulation of supply chain. Firstly, with the characteristics of blockchain including decentralization, non-tampering and non-repudiation, the system can solve the problem puzzling the traditional database about untruthful and unreliable data, and has advantages in managing supply chain and realizing product traceability. The authenticity and reliability of data on the chain also make it easier for the government to investigate and affix the responsibility of vicious incidents. At the same time, the system adopts the parent-children chain structure and the storage mode combining on-chain and off-chain resources to overcome the contradiction between information disclosure requirements of the government and privacy protection requirements of enterprises, which can better meet the needs of various users. Moreover, the application of smart contracts can replace a large number of the manual work like repetitive data analysis, which can make analysis results more accurate and avoid human failure.
2021-11-30
Marah, Rim, Gabassi, Inssaf El, Larioui, Sanae, Yatimi, Hanane.  2020.  Security of Smart Grid Management of Smart Meter Protection. 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). :1–5.
The need of more secured and environmental energy is becoming a necessity and priority in an environment suffering from serious problems due to technological development. Since the Smart Grid is a promising alternative that supports green energy and enhances a better management of electricity, the security side has became one of the major and critical associated issues in building the communication network in the microgrid.In this paper we will present the Smart Grid Cyber security challenges and propose a distributed algorithm that face one of the biggest problems threatening the smart grid which is fires.
2021-11-29
Imanimehr, Fatemeh, Gharaee, Hossein, Enayati, Alireza.  2020.  An Architecture for National Information Sharing and Alerting System. 2020 10th International Symposium onTelecommunications (IST). :217–221.
Protecting critical infrastructure from cyber threats is one of the most important obligations of governments to ensure the national and social security of the society. Developing national cyber situational awareness platform provides a protection of critical infrastructures. In such a way, each infrastructure, independently, generates its own situational awareness and shares it with other infrastructures through a national sharing and alerting center. The national information sharing and alerting center collects cyber information of infrastructures and draws a picture of national situational awareness by examining the potential effects of received threats on other infrastructures and predicting the national cyber status in near future. This paper represents the conceptual architecture for such national sharing system and suggests some brief description of its implementation.
2021-08-31
S, Sahana, Shankaraiah.  2020.  Securing Govt Research Content using QR Code Image. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.
Government division may be a crucial portion of the nation's economy. Security of government inquire about substance from all sorts of dangers is basic not as it were for trade coherence but too for supporting the economy of the country as a entirety. With the digitization of conventional records, government substances experience troublesome issues, such as government capacity and access. Research office spend significant time questioning the specified information when getting to Government investigate substance subtle elements, but the gotten information are not fundamentally rectify, and get to is some of the time limited. On this premise, this think about proposes a investigate substance which utilize ciphertext-based encryption to guarantee information privacy and get to control of record subtle elements. The investigate head may scramble the put away data for accomplishing get to control and keeping information secure. In this manner AES Rijndael calculation is utilized for encryption. This guarantees security for the data and empowers Protection.
2021-05-13
Feng, Xiaohua, Feng, Yunzhong, Dawam, Edward Swarlat.  2020.  Artificial Intelligence Cyber Security Strategy. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :328—333.
Nowadays, STEM (science, technology, engineering and mathematics) have never been treated so seriously before. Artificial Intelligence (AI) has played an important role currently in STEM. Under the 2020 COVID-19 pandemic crisis, coronavirus disease across over the world we are living in. Every government seek advices from scientist before making their strategic plan. Most of countries collect data from hospitals (and care home and so on in the society), carried out data analysis, using formula to make some AI models, to predict the potential development patterns, in order to make their government strategy. AI security become essential. If a security attack make the pattern wrong, the model is not a true prediction, that could result in thousands life loss. The potential consequence of this non-accurate forecast would be even worse. Therefore, take security into account during the forecast AI modelling, step-by-step data governance, will be significant. Cyber security should be applied during this kind of prediction process using AI deep learning technology and so on. Some in-depth discussion will follow.AI security impact is a principle concern in the world. It is also significant for both nature science and social science researchers to consider in the future. In particular, because many services are running on online devices, security defenses are essential. The results should have properly data governance with security. AI security strategy should be up to the top priority to influence governments and their citizens in the world. AI security will help governments' strategy makers to work reasonably balancing between technologies, socially and politics. In this paper, strategy related challenges of AI and Security will be discussed, along with suggestions AI cyber security and politics trade-off consideration from an initial planning stage to its near future further development.
2021-04-27
Tian, Z..  2020.  Design and Implementation of Distributed Government Audit System Based on Multidimensional Online Analysis. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :981–983.
With the continuous progress of the information age, e-commerce, the Internet of things and other emerging Internet areas are gradually emerging. Massive amount of structured data auditing becomes a major issue. Log files and other data can be uploaded to the cloud via the Internet to guard against potential threats. Difficulty now is how to realize the data in the field of data audit query online, interactive and impromptu. There are two main methods of data warehouse, respectively is zhang table reduction method and basic data verification method. In the age of big data, data quantity increases gradually, so that the audit speed, design of the data storage and so on will be more or less problematic. If the audit task is not completed in time, it will result in the failure to store the audit data, which will cause losses to enterprises and the government. This paper focuses on the data cube physical model and distributed technical analysis, through the establishment of a set of efficient distributed and online auditing system, so as to make the data fast and efficient auditing.
Abraham, A., Kumar, M. B. Santosh.  2020.  A study on using private-permissioned blockchain for securely sharing farmers data. 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). :103—106.
In agriculture, farmers are the most important entity. For supporting farmers in increasing productivity and efficiency, the government offers subsidies, loans, insurances, and so on. This paper explores the usage of Blockchain technology for securing farmer's data in the Indian scenario. The farmer needs to register through the multiple official registration systems for availing different schemes and information provided by the country. The personnel and crop-based details of each farmer are collected at the time of registration. The filing also helps in providing better services to farmers like connecting farmers and traders to ensure a fair price for quality crops, advice to farmers of agricultural practices and location. In this paper, a blockchain-based farmer's data securing system is proposed to provide data provenance and transparency of the information entered in the system. While registering, the data is collected, and it is verified. A single verified record of farmers accessed by various government agriculture departments were designed using the Hyperledger fabric framework.
2021-03-30
Gillen, R. E., Carter, J. M., Craig, C., Johnson, J. A., Scott, S. L..  2020.  Assessing Anomaly-Based Intrusion Detection Configurations for Industrial Control Systems. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :360—366.

To reduce cost and ease maintenance, industrial control systems (ICS) have adopted Ethernetbased interconnections that integrate operational technology (OT) systems with information technology (IT) networks. This integration has made these critical systems vulnerable to attack. Security solutions tailored to ICS environments are an active area of research. Anomalybased network intrusion detection systems are well-suited for these environments. Often these systems must be optimized for their specific environment. In prior work, we introduced a method for assessing the impact of various anomaly-based network IDS settings on security. This paper reviews the experimental outcomes when we applied our method to a full-scale ICS test bed using actual attacks. Our method provides new and valuable data to operators enabling more informed decisions about IDS configurations.

2021-03-29
Gururaj, P..  2020.  Identity management using permissioned blockchain. 2020 International Conference on Mainstreaming Block Chain Implementation (ICOMBI). :1—3.

Authenticating a person's identity has always been a challenge. While attempts are being made by government agencies to address this challenge, the citizens are being exposed to a new age problem of Identity management. The sharing of photocopies of identity cards in order to prove our identity is a common sight. From score-card to Aadhar-card, the details of our identity has reached many unauthorized hands during the years. In India the identity thefts accounts for 77% [1] of the fraud cases, and the threats are trending. Programs like e-Residency by Estonia[2], Bitnation using Ethereum[3] are being devised for an efficient Identity Management. Even the US Home Land Security is funding a research with an objective of “Design information security and privacy concepts on the Blockchain to support identity management capabilities that increase security and productivity while decreasing costs and security risks for the Homeland Security Enterprise (HSE).” [4] This paper will discuss the challenges specific to India around Identity Management, and the possible solution that the Distributed ledger, hashing algorithms and smart contracts can offer. The logic of hashing the personal data, and controlling the distribution of identity using public-private keys with Blockchain technology will be discussed in this paper.

2021-02-23
Yu, M., He, T., McDaniel, P., Burke, Q. K..  2020.  Flow Table Security in SDN: Adversarial Reconnaissance and Intelligent Attacks. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1519—1528.

The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.

Mukhametov, D. R..  2020.  Self-organization of Network Communities via Blockchain Technology: Reputation Systems and Limits of Digital Democracy. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). :1—7.

The article is devoted to the analysis of the use of blockchain technology for self-organization of network communities. Network communities are characterized by the key role of trust in personal interactions, the need for repeated interactions, strong and weak ties within the network, social learning as the mechanism of self-organization. Therefore, in network communities reputation is the central component of social action, assessment of the situation, and formation of the expectations. The current proliferation of virtual network communities requires the development of appropriate technical infrastructure in the form of reputation systems - programs that provide calculation of network members reputation and organization of their cooperation and interaction. Traditional reputation systems have vulnerabilities in the field of information security and prevention of abusive behavior of agents. Overcoming these restrictions is possible through integration of reputation systems and blockchain technology that allows to increase transparency of reputation assessment system and prevent attempts of manipulation the system and social engineering. At the same time, the most promising is the use of blockchain-oracles to ensure communication between the algorithms of blockchain-based reputation system and the external information environment. The popularization of blockchain technology and its implementation in various spheres of social management, production control, economic exchange actualizes the problems of using digital technologies in political processes and their impact on the formation of digital authoritarianism, digital democracy and digital anarchism. The paper emphasizes that blockchain technology and reputation systems can equally benefit both the resources of government control and tools of democratization and public accountability to civil society or even practices of avoiding government. Therefore, it is important to take into account the problems of political institutionalization, path dependence and the creation of differentiated incentives as well as the technological aspects.

2021-01-25
Oesch, S., Bridges, R., Smith, J., Beaver, J., Goodall, J., Huffer, K., Miles, C., Scofield, D..  2020.  An Assessment of the Usability of Machine Learning Based Tools for the Security Operations Center. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :634—641.

Gartner, a large research and advisory company, anticipates that by 2024 80% of security operation centers (SOCs) will use machine learning (ML) based solutions to enhance their operations.11https://www.ciodive.com/news/how-data-science-tools-can-lighten-the-load-for-cybersecurity-teams/572209/ In light of such widespread adoption, it is vital for the research community to identify and address usability concerns. This work presents the results of the first in situ usability assessment of ML-based tools. With the support of the US Navy, we leveraged the national cyber range-a large, air-gapped cyber testbed equipped with state-of-the-art network and user emulation capabilities-to study six US Naval SOC analysts' usage of two tools. Our analysis identified several serious usability issues, including multiple violations of established usability heuristics for user interface design. We also discovered that analysts lacked a clear mental model of how these tools generate scores, resulting in mistrust \$a\$ and/or misuse of the tools themselves. Surprisingly, we found no correlation between analysts' level of education or years of experience and their performance with either tool, suggesting that other factors such as prior background knowledge or personality play a significant role in ML-based tool usage. Our findings demonstrate that ML-based security tool vendors must put a renewed focus on working with analysts, both experienced and inexperienced, to ensure that their systems are usable and useful in real-world security operations settings.

2020-12-28
Yang, H., Huang, L., Luo, C., Yu, Q..  2020.  Research on Intelligent Security Protection of Privacy Data in Government Cyberspace. 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :284—288.

Based on the analysis of the difficulties and pain points of privacy protection in the opening and sharing of government data, this paper proposes a new method for intelligent discovery and protection of structured and unstructured privacy data. Based on the improvement of the existing government data masking process, this method introduces the technologies of NLP and machine learning, studies the intelligent discovery of sensitive data, the automatic recommendation of masking algorithm and the full automatic execution following the improved masking process. In addition, the dynamic masking and static masking prototype with text and database as data source are designed and implemented with agent-based intelligent masking middleware. The results show that the recognition range and protection efficiency of government privacy data, especially government unstructured text have been significantly improved.

2020-11-16
Belesioti, M., Makri, R., Fehling-Kaschek, M., Carli, M., Kostopoulos, A., Chochliouros, I. P., Neri, A., Frosali, F..  2019.  A New Security Approach in Telecom Infrastructures: The RESISTO Concept. 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). :212–218.
Communications play a fundamental role in the economic and social well-being of the citizens and on operations of most of the critical infrastructures (CIs). Extreme weather events, natural disasters and criminal attacks represent a challenge due to their increase in frequency and intensity requiring smarter resilience of the Communication CIs, which are extremely vulnerable due to the ever-increasing complexity of the architecture also in light of the evolution towards 5G, the extensive use of programmable platforms and exponential growth of connected devices. In this paper, we present the aim of RESISTO H2020 EU-funded project, which constitutes an innovative solution for Communication CIs holistic situation awareness and enhanced resilience.
2020-10-16
Liu, Liping, Piao, Chunhui, Jiang, Xuehong, Zheng, Lijuan.  2018.  Research on Governmental Data Sharing Based on Local Differential Privacy Approach. 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE). :39—45.

With the construction and implementation of the government information resources sharing mechanism, the protection of citizens' privacy has become a vital issue for government departments and the public. This paper discusses the risk of citizens' privacy disclosure related to data sharing among government departments, and analyzes the current major privacy protection models for data sharing. Aiming at the issues of low efficiency and low reliability in existing e-government applications, a statistical data sharing framework among governmental departments based on local differential privacy and blockchain is established, and its applicability and advantages are illustrated through example analysis. The characteristics of the private blockchain enhance the security, credibility and responsiveness of information sharing between departments. Local differential privacy provides better usability and security for sharing statistics. It not only keeps statistics available, but also protects the privacy of citizens.

Sayed Javed, Ahmad.  2018.  Total e-Governance: Pros Cons. 2018 International Conference on Computational Science and Computational Intelligence (CSCI). :245—249.

"Good Governance" - may it be corporate or governmental, is a badly needed focus area in the world today where the companies and governments are struggling to survive the political and economical turmoil around the globe. All governments around the world have a tendency of expanding the size of their government, but eventually they would be forced to think reducing the size by incorporating information technology as a way to provide services to the citizens effectively and efficiently. Hence our attempt is to offer a complete solution from birth of a citizen till death encompassing all the necessary services related to the well being of a person living in a society. Our research and analysis would explore the pros and cons of using IT as a solution to our problems and ways to implement them for a best outcome in e-Governance occasionally comparing with the present scenario when relevant.

Al-Nemrat, Ameer.  2018.  Identity theft on e-government/e-governance digital forensics. 2018 International Symposium on Programming and Systems (ISPS). :1—1.

In the context of the rapid technological progress, the cyber-threats become a serious challenge that requires immediate and continuous action. As cybercrime poses a permanent and increasing threat, governments, corporate and individual users of the cyber-space are constantly struggling to ensure an acceptable level of security over their assets. Maliciousness on the cyber-space spans identity theft, fraud, and system intrusions. This is due to the benefits of cyberspace-low entry barriers, user anonymity, and spatial and temporal separation between users, make it a fertile field for deception and fraud. Numerous, supervised and unsupervised, techniques have been proposed and used to identify fraudulent transactions and activities that deviate from regular patterns of behaviour. For instance, neural networks and genetic algorithms were used to detect credit card fraud in a dataset covering 13 months and 50 million credit card transactions. Unsupervised methods, such as clustering analysis, have been used to identify financial fraud or to filter fake online product reviews and ratings on e-commerce websites. Blockchain technology has demonstrated its feasibility and relevance in e-commerce. Its use is now being extended to new areas, related to electronic government. The technology appears to be the most appropriate in areas that require storage and processing of large amounts of protected data. The question is what can blockchain technology do and not do to fight malicious online activity?

2020-08-28
Molesky, Mason J., Cameron, Elizabeth A..  2019.  Internet of Things: An Analysis and Proposal of White Worm Technology. 2019 IEEE International Conference on Consumer Electronics (ICCE). :1—4.

The quantity of Internet of Things (IoT) devices in the marketplace and lack of security is staggering. The interconnectedness of IoT devices has increased the attack surface for hackers. "White Worm" technology has the potential to combat infiltrating malware. Before white worm technology becomes viable, its capabilities must be constrained to specific devices and limited to non-harmful actions. This paper addresses the current problem, international research, and the conflicting interest of individuals, businesses, and governments regarding white worm technology. Proposed is a new perspective on utilizing white worm technology to protect the vulnerability of IoT devices, while overcoming its challenges.

2020-08-07
Mehta, Brijesh B., Gupta, Ruchika, Rao, Udai Pratap, Muthiyan, Mukesh.  2019.  A Scalable (\$\textbackslashtextbackslashalpha, k\$)-Anonymization Approach using MapReduce for Privacy Preserving Big Data Publishing. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Different tools and sources are used to collect big data, which may create privacy issues. k-anonymity, l-diversity, t-closeness etc. privacy preserving data publishing approaches are used data de-identification, but as multiple sources is used to collect the data, chance of re-identification is very high. Anonymization large data is not a trivial task, hence, privacy preserving approaches scalability has become a challenging research area. Researchers explore it by proposing algorithms for scalable anonymization. We further found that in some scenarios efficient anonymization is not enough, timely anonymization is also required. Hence, to incorporate the velocity of data with Scalable k-Anonymization (SKA) approach, we propose a novel approach, Scalable ( α, k)-Anonymization (SAKA). Our proposed approach outperforms in terms of information loss and running time as compared to existing approaches. With best of our knowledge, this is the first proposed scalable anonymization approach for the velocity of data.
2020-07-30
Jiang, Tao, Hu, Shuijing.  2019.  Intellectual Property Protection for AI-Related Inventions in Japan. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :286—289.
To increase the possibility of patent entitled of artificial intelligence related inventions at the Japanese patent office, this paper analyzes the Japanese patent act and patent examination guidelines. The approach for assessing whether a computer related invention belongs to a eligible subject-matter includes two steps. The first step is whether a computer related invention meets the definition of an "invention" that is "creation of a technical idea utilizing the laws of nature" . The second step is whether a computer related invention meets "idea based on the standpoint of software" . From the perspective of patent analysis, Japan's artificial intelligence technology is leading the world, second only to the United States. In this field, the Japanese patent office is one of the most important intellectual property offices, and its legislation and practice of patent eligibility review for artificial intelligence related inventions have an important impact on the world.
2020-07-27
Tun, May Thet, Nyaung, Dim En, Phyu, Myat Pwint.  2019.  Performance Evaluation of Intrusion Detection Streaming Transactions Using Apache Kafka and Spark Streaming. 2019 International Conference on Advanced Information Technologies (ICAIT). :25–30.
In the information era, the size of network traffic is complex because of massive Internet-based services and rapid amounts of data. The more network traffic has enhanced, the more cyberattacks have dramatically increased. Therefore, cybersecurity intrusion detection has been a challenge in the current research area in recent years. The Intrusion detection system requires high-level protection and detects modern and complex attacks with more accuracy. Nowadays, big data analytics is the main key to solve marketing, security and privacy in an extremely competitive financial market and government. If a huge amount of stream data flows within a short period time, it is difficult to analyze real-time decision making. Performance analysis is extremely important for administrators and developers to avoid bottlenecks. The paper aims to reduce time-consuming by using Apache Kafka and Spark Streaming. Experiments on the UNSWNB-15 dataset indicate that the integration of Apache Kafka and Spark Streaming can perform better in terms of processing time and fault-tolerance on the huge amount of data. According to the results, the fault tolerance can be provided by the multiple brokers of Kafka and parallel recovery of Spark Streaming. And then, the multiple partitions of Apache Kafka increase the processing time in the integration of Apache Kafka and Spark Streaming.
2020-05-15
Sugrim, Shridatt, Venkatesan, Sridhar, Youzwak, Jason A., Chiang, Cho-Yu J., Chadha, Ritu, Albanese, Massimiliano, Cam, Hasan.  2018.  Measuring the Effectiveness of Network Deception. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :142—147.

Cyber reconnaissance is the process of gathering information about a target network for the purpose of compromising systems within that network. Network-based deception has emerged as a promising approach to disrupt attackers' reconnaissance efforts. However, limited work has been done so far on measuring the effectiveness of network-based deception. Furthermore, given that Software-Defined Networking (SDN) facilitates cyber deception by allowing network traffic to be modified and injected on-the-fly, understanding the effectiveness of employing different cyber deception strategies is critical. In this paper, we present a model to study the reconnaissance surface of a network and model the process of gathering information by attackers as interactions with a cyber defensive system that may use deception. To capture the evolution of the attackers' knowledge during reconnaissance, we design a belief system that is updated by using a Bayesian inference method. For the proposed model, we present two metrics based on KL-divergence to quantify the effectiveness of network deception. We tested the model and the two metrics by conducting experiments with a simulated attacker in an SDN-based deception system. The results of the experiments match our expectations, providing support for the model and proposed metrics.

2020-04-10
Ikhsan, Mukhammad Gufron, Ramli, Kalamullah.  2019.  Measuring the Information Security Awareness Level of Government Employees Through Phishing Assessment. 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1—4.

As an important institutional element, government information security is not only related to technical issues but also to human resources. Various types of information security instruments in an institution cannot provide maximum protection as long as employees still have a low level of information security awareness. This study aims to measure the level of information security awareness of government employees through case studies at the Directorate General of ABC (DG ABC) in Indonesia. This study used two methods, behavior approach through phishing simulation and knowledge approach through a questionnaire on a Likert scale. The simulation results were analyzed on a percentage scale and compared to the results of the questionnaire to determine the level of employees' information security awareness and determine which method was the best. Results show a significant relationship between the simulation results and the questionnaire results. Among the employees who opened the email, 69% clicked on the link that led to the camouflage page and through the questionnaire, it was found that the information security awareness level of DG ABC employees was at the level of 79.32% which was the lower limit of the GOOD category.