Visible to the public Biblio

Found 143 results

Filters: Keyword is Image coding  [Clear All Filters]
2023-07-31
Legrand, Antoine, Macq, Benoît, De Vleeschouwer, Christophe.  2022.  Forward Error Correction Applied to JPEG-XS Codestreams. 2022 IEEE International Conference on Image Processing (ICIP). :3723—3727.
JPEG-XS offers low complexity image compression for applications with constrained but reasonable bit-rate, and low latency. Our paper explores the deployment of JPEG-XS on lossy packet networks. To preserve low latency, Forward Error Correction (FEC) is envisioned as the protection mechanism of interest. Although the JPEG-XS codestream is not scalable in essence, we observe that the loss of a codestream fraction impacts the decoded image quality differently, depending on whether this codestream fraction corresponds to codestream headers, to coefficient significance information, or to low/high frequency data. Hence, we propose a rate-distortion optimal unequal error protection scheme that adapts the redundancy level of Reed-Solomon codes according to the rate of channel losses and the type of information protected by the code. Our experiments demonstrate that, at 5% loss rates, it reduces the Mean Squared Error by up to 92% and 65%, compared to a transmission without and with optimal but equal protection, respectively.
2023-07-12
Amdouni, Rim, Gafsi, Mohamed, Hajjaji, Mohamed Ali, Mtibaa, Abdellatif.  2022.  Combining DNA Encoding and Chaos for Medical Image Encryption. 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :277—282.
A vast volume of digital electronic health records is exchanged across the open network in this modern era. Cross all the existing security methods, encryption is a dependable method of data security. This study discusses an encryption technique for digital medical images that uses chaos combined with deoxyribonucleic acid (DNA). In fact, Rossler's and Lorenz's chaotic systems along with DNA encoding are used in the suggested medical image cryptographic system. Chaos is used to create a random key stream. The DNA encoding rules are then used to encode the key and the input original image. A hardware design of the proposed scheme is implemented on the Zedboard development kit. The experimental findings show that the proposed cryptosystem has strong security while maintaining acceptable hardware performances.
2023-06-30
Anju, J., Shreelekshmi, R..  2022.  An Enhanced Copy-deterrence scheme for Secure Image Outsourcing in Cloud. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :97–102.
In this paper, we propose a novel watermarking-based copy deterrence scheme for identifying data leaks through authorized query users in secure image outsourcing systems. The scheme generates watermarks unique to each query user, which are embedded in the retrieved encrypted images. During unauthorized distribution, the watermark embedded in the image is extracted to determine the untrustworthy query user. Experimental results show that the proposed scheme achieves minimal information loss, faster embedding and better resistance to JPEG compression attacks compared with the state-of-the-art schemes.
2023-06-23
Rajin, S M Ataul Karim, Murshed, Manzur, Paul, Manoranjan, Teng, Shyh Wei, Ma, Jiangang.  2022.  Human pose based video compression via forward-referencing using deep learning. 2022 IEEE International Conference on Visual Communications and Image Processing (VCIP). :1–5.

To exploit high temporal correlations in video frames of the same scene, the current frame is predicted from the already-encoded reference frames using block-based motion estimation and compensation techniques. While this approach can efficiently exploit the translation motion of the moving objects, it is susceptible to other types of affine motion and object occlusion/deocclusion. Recently, deep learning has been used to model the high-level structure of human pose in specific actions from short videos and then generate virtual frames in future time by predicting the pose using a generative adversarial network (GAN). Therefore, modelling the high-level structure of human pose is able to exploit semantic correlation by predicting human actions and determining its trajectory. Video surveillance applications will benefit as stored “big” surveillance data can be compressed by estimating human pose trajectories and generating future frames through semantic correlation. This paper explores a new way of video coding by modelling human pose from the already-encoded frames and using the generated frame at the current time as an additional forward-referencing frame. It is expected that the proposed approach can overcome the limitations of the traditional backward-referencing frames by predicting the blocks containing the moving objects with lower residuals. Our experimental results show that the proposed approach can achieve on average up to 2.83 dB PSNR gain and 25.93% bitrate savings for high motion video sequences compared to standard video coding.

ISSN: 2642-9357

Konuko, Goluck, Valenzise, Giuseppe, Lathuilière, Stéphane.  2022.  Ultra-Low Bitrate Video Conferencing Using Deep Image Animation. 2022 IEEE International Conference on Image Processing (ICIP). :3515–3520.

In this work we propose a novel deep learning approach for ultra-low bitrate video compression for video conferencing applications. To address the shortcomings of current video compression paradigms when the available bandwidth is extremely limited, we adopt a model-based approach that employs deep neural networks to encode motion information as keypoint displacement and reconstruct the video signal at the decoder side. The overall system is trained in an end-to-end fashion minimizing a reconstruction error on the encoder output. Objective and subjective quality evaluation experiments demonstrate that the proposed approach provides an average bitrate reduction for the same visual quality of more than 60% compared to HEVC.

ISSN: 2381-8549

2023-04-28
Pham, Quang Duc, Hayasaki, Yoshio.  2022.  Time of flight three-dimensional imaging camera using compressive sampling technique with sparse frequency intensity modulation light source. 2022 IEEE CPMT Symposium Japan (ICSJ). :168–171.
The camera constructed by a megahertz range intensity modulation active light source and a kilo-frame rate range fast camera based on compressive sensing (CS) technique for three-dimensional (3D) image acquisition was proposed in this research.
ISSN: 2475-8418
Lotfollahi, Mahsa, Tran, Nguyen, Gajjela, Chalapathi, Berisha, Sebastian, Han, Zhu, Mayerich, David, Reddy, Rohith.  2022.  Adaptive Compressive Sampling for Mid-Infrared Spectroscopic Imaging. 2022 IEEE International Conference on Image Processing (ICIP). :2336–2340.
Mid-infrared spectroscopic imaging (MIRSI) is an emerging class of label-free, biochemically quantitative technologies targeting digital histopathology. Conventional histopathology relies on chemical stains that alter tissue color. This approach is qualitative, often making histopathologic examination subjective and difficult to quantify. MIRSI addresses these challenges through quantitative and repeatable imaging that leverages native molecular contrast. Fourier transform infrared (FTIR) imaging, the best-known MIRSI technology, has two challenges that have hindered its widespread adoption: data collection speed and spatial resolution. Recent technological breakthroughs, such as photothermal MIRSI, provide an order of magnitude improvement in spatial resolution. However, this comes at the cost of acquisition speed, which is impractical for clinical tissue samples. This paper introduces an adaptive compressive sampling technique to reduce hyperspectral data acquisition time by an order of magnitude by leveraging spectral and spatial sparsity. This method identifies the most informative spatial and spectral features, integrates a fast tensor completion algorithm to reconstruct megapixel-scale images, and demonstrates speed advantages over FTIR imaging while providing spatial resolutions comparable to new photothermal approaches.
ISSN: 2381-8549
Nema, Tesu, Parsai, M. P..  2022.  Reconstruction of Incomplete Image by Radial Sampling. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
Signals get sampled using Nyquist rate in conventional sampling method, but in compressive sensing the signals sampled below Nyquist rate by randomly taking the signal projections and reconstructing it out of very few estimations. But in case of recovering the image by utilizing compressive measurements with the help of multi-resolution grid where the image has certain region of interest (RoI) that is more important than the rest, it is not efficient. The conventional Cartesian sampling cannot give good result in motion image sensing recovery and is limited to stationary image sensing process. The proposed work gives improved results by using Radial sampling (a type of compression sensing). This paper discusses the approach of Radial sampling along with the application of Sparse Fourier Transform algorithms that helps in reducing acquisition cost and input/output overhead.
ISSN: 2329-7190
2023-02-03
Sultana, Habiba, Kamal, A H M.  2022.  An Edge Detection Based Reversible Data Hiding Scheme. 2022 IEEE Delhi Section Conference (DELCON). :1–6.

Edge detection based embedding techniques are famous for data security and image quality preservation. These techniques use diverse edge detectors to classify edge and non-edge pixels in an image and then implant secrets in one or both of these classes. Image with conceived data is called stego image. It is noticeable that none of such researches tries to reform the original image from the stego one. Rather, they devote their concentration to extract the hidden message only. This research presents a solution to the raised reversibility problem. Like the others, our research, first, applies an edge detector e.g., canny, in a cover image. The scheme next collects \$n\$-LSBs of each of edge pixels and finally, concatenates them with encrypted message stream. This method applies a lossless compression algorithm to that processed stream. Compression factor is taken such a way that the length of compressed stream does not exceed the length of collected LSBs. The compressed message stream is then implanted only in the edge pixels by \$n\$-LSB substitution method. As the scheme does not destroy the originality of non-edge pixels, it presents better stego quality. By incorporation the mechanisms of encryption, concatenation, compression and \$n\$-LSB, the method has enriched the security of implanted data. The research shows its effectiveness while implanting a small sized message.

Feng, Jinliu, Wang, Yaofei, Chen, Kejiang, Zhang, Weiming, Yu, Nenghai.  2022.  An Effective Steganalysis for Robust Steganography with Repetitive JPEG Compression. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3084–3088.
With the development of social networks, traditional covert communication requires more consideration of lossy processes of Social Network Platforms (SNPs), which is called robust steganography. Since JPEG compression is a universal processing of SNPs, a method using repeated JPEG compression to fit transport channel matching is recently proposed and shows strong compression-resist performance. However, the repeated JPEG compression will inevitably introduce other artifacts into the stego image. Using only traditional steganalysis methods does not work well towards such robust steganography under low payload. In this paper, we propose a simple and effective method to detect the mentioned steganography by chasing both steganographic perturbations as well as continuous compression artifacts. We introduce compression-forensic features as a complement to steganalysis features, and then use the ensemble classifier for detection. Experiments demonstrate that this method owns a similar and better performance with respect to both traditional and neural-network-based steganalysis.
ISSN: 2379-190X
Kotkar, Aditya, Khadapkar, Shreyas, Gupta, Aniket, Jangale, Smita.  2022.  Multiple layered Security using combination of Cryptography with Rotational, Flipping Steganography and Message Authentication. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Data or information are being transferred at an enormous pace and hence protecting and securing this transmission of data are very important and have been very challenging. Cryptography and Steganography are the most broadly used techniques for safeguarding data by encryption of data and hiding the existence of data. A multi-layered secure transmission can be achieved by combining Cryptography with Steganography and by adding message authentication ensuring the confidentiality of the message. Different approach towards Steganography implementation is proposed using rotations and flips to prevent detection of encoded messages. Compression of multimedia files is set up for increasing the speed of encoding and consuming less storage space. The HMAC (Hash-based Authentication Code) algorithm is chosen for message authentication and integrity. The performance of the proposed Steganography methods is concluded using Histogram comparative analysis. Simulations have been performed to back the reliability of the proposed method.
2023-01-20
Kumar, T. Ch. Anil, Dixit, Ganesh Kumar, Singh, Rajesh, Narukullapati, Bharath Kumar, Chakravarthi, M. Kalyan, Gangodkar, Durgaprasad.  2022.  Wireless Sensor Network using Control Communication and Monitoring of Smart Grid. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1567—1570.
For some countries around the world, meeting demand is a serious concern. Power supply market is increasingly increasing, posing a big challenge for various countries throughout the world. The increasing expansion in the market for power needs upgrading system dependability to increase the smart grid's resilience. This smart electric grid has a sensor that analyses grid power availability and sends regular updates to the organisation. The internet is currently being utilized to monitor processes and place orders for running variables from faraway places. A large number of scanners have been used to activate electrical equipment for domestic robotics for a long period in the last several days. Conversely, if it is not correctly implemented, it will have a negative impact on cost-effectiveness as well as productivity. For something like a long time, home automation has relied on a large number of sensor nodes to control electrical equipment. Since there are so many detectors, this isn't cost-effective. In this article, develop and accept a wireless communication component and a management system suitable for managing independent efficient network units from voltage rises and voltage control technologies in simultaneous analyzing system reliability in this study. This research paper has considered secondary method to collect relevant and in-depth data related to the wireless sensor network and its usage in smart grid monitoring.
2022-12-06
Lafci, Mehmet, Ertuğ, Özgür.  2022.  Performance Optimization of 6LoWPAN Systems for RF AMR System Using Turbo and LDPC Codes. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1-4.

This work analyzed the coding gain that is provided in 6LoWPAN transceivers when channel-coding methods are used. There were made improvements at physical layer of 6LoWPAN technology in the system suggested. Performance analysis was performed using turbo, LDPC and convolutional codes on IEEE 802.15.4 standard that is used in the relevant physical layer. Code rate of convolutional and turbo codes are set to 1/3 and 1/4. For LDPC codes, the code rate is set as 3/4 and 5/6. According to simulation results obtained from the MATLAB environment, turbo codes give better results than LDPC and convolutional codes. It is seen that an average of 3 dB to 8 dB gain is achieved in turbo codes, in LDPC and convolutional coding, it is observed that the gain is between 2 dB and 6 dB depending on the modulation type and code rate.

2022-11-02
Zhao, Li, Jiao, Yan, Chen, Jie, Zhao, Ruixia.  2021.  Image Style Transfer Based on Generative Adversarial Network. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). :191–195.
Image style transfer refers to the transformation of the style of image, so that the image details are retained to the maximum extent while the style is transferred. Aiming at the problem of low clarity of style transfer images generated by CycleGAN network, this paper improves the CycleGAN network. In this paper, the network model of auto-encoder and variational auto-encoder is added to the structure. The encoding part of the auto-encoder is used to extract image content features, and the variational auto-encoder is used to extract style features. At the same time, the generating network of the model in this paper uses first to adjust the image size and then perform the convolution operation to replace the traditional deconvolution operation. The discriminating network uses a multi-scale discriminator to force the samples generated by the generating network to be more realistic and approximate the target image, so as to improve the effect of image style transfer.
2022-10-20
Elharrouss, Omar, Almaadeed, Noor, Al-Maadeed, Somaya.  2020.  An image steganography approach based on k-least significant bits (k-LSB). 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :131—135.
Image steganography is the operation of hiding a message into a cover image. the message can be text, codes, or image. Hiding an image into another is the proposed approach in this paper. Based on LSB coding, a k-LSB-based method is proposed using k least bits to hide the image. For decoding the hidden image, a region detection operation is used to know the blocks contains the hidden image. The resolution of stego image can be affected, for that, an image quality enhancement method is used to enhance the image resolution. To demonstrate the effectiveness of the proposed approach, we compare it with some of the state-of-the-art methods.
Abdali, Natiq M., Hussain, Zahir M..  2020.  Reference-free Detection of LSB Steganography Using Histogram Analysis. 2020 30th International Telecommunication Networks and Applications Conference (ITNAC). :1—7.
Due to the difficulty of obtaining a database of original images that are required in the classification process to detect tampering, this paper presents a technique for detecting image tampering such as image steganography in the spatial domain. The system depends on deriving the auto-correlation function of the image histogram, then applying a high-pass filter with a threshold. This technique can be used to decide which image is cover or a stego image, without adopting the original image. The results have eventually revealed the validity of this system. Although this study has focused on least-significant-bit (LSB) steganography, we expect that it could be extended to other types of image tapering.
Vishnu, B., Sajeesh, Sandeep R, Namboothiri, Leena Vishnu.  2020.  Enhanced Image Steganography with PVD and Edge Detection. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :949—953.
Steganography is the concept to conceal information and the data by embedding it as secret data into various digital medium in order to achieve higher security. To achieve this, many steganographic algorithms are already proposed. The ability of human eyes as well as invisibility remain the most important and prominent factor for the security and protection. The most commonly used security measure of data hiding within imagesYet it is ineffective against Steganalysis and lacks proper verifications. Thus the proposed system of Image Steganography using PVD (Pixel Value Differentiating) proves to be a better choice. It compresses and embeds data in images at the pixel value difference calculated between two consecutive pixels. To increase the security, another technique called Edge Detection is used along with PVD to embed data at the edges. Edge Detection techniques like Canny algorithm are used to find the edges in an image horizontally as well as vertically. The edge pixels in an image can be used to handle more bits of messages, because more pixel value shifts can be handled by the image edge area.
Tiwari, Krishnakant, Gangurde, Sahil J..  2021.  LSB Steganography Using Pixel Locator Sequence with AES. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :302—307.
Image steganography is a technique of hiding confidential data in the images. We do this by incorporating the LSB(Least Significant Bit) of the image pixels. LSB steganography has been there for a while, and much progress has been made in it. In this paper, we try to increase the security of the LSB steganography process by incorporating a random data distribution method which we call pixel locator sequence (PLS). This method scatters the data to be infused into the image by randomly picking up the pixels and changing their LSB value accordingly. This random distribution makes it difficult for unknowns to look for the data. This PLS file is also encrypted using AES and is key for the data encryption/decryption process between the two parties. This technique is not very space-efficient and involves sending meta-data (PLS), but that trade-off was necessary for the additional security. We evaluated the proposed approach using two criteria: change in image dynamics and robustness against steganalysis attacks. To assess change in image dynamics, we measured the MSE and PSNR values. To find the robustness of the proposed method, we used the tool StegExpose which uses the stego image produced from the proposed algorithm and analyzes them using the major steganalysis attacks such as Primary Sets, Chi-Square, Sample Pairs, and RS Analysis. Finally, we show that this method has good security metrics for best known LSB steganography detection tools and techniques.
2022-08-12
Kafedziski, Venceslav.  2021.  Compressive Sampling Stepped Frequency GPR Using Probabilistic Structured Sparsity Models. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :139—144.
We investigate a compressive sampling (CS) stepped frequency ground penetrating radar for detection of underground objects, which uses Bayesian estimation and a probabilistic model for the target support. Due to the underground targets being sparse, the B-scan is a sparse image. Using the CS principle, the stepped frequency radar is implemented using a subset of random frequencies at each antenna position. For image reconstruction we use Markov Chain and Markov Random Field models for the target support in the B-scan, where we also estimate the model parameters using the Expectation Maximization algorithm. The approach is tested using Web radar data obtained by measuring the signal responses scattered off land mine targets in a laboratory experimental setup. Our approach results in improved performance compared to the standard denoising algorithm for image reconstruction.
Blanco, Geison, Perez, Juan, Monsalve, Jonathan, Marquez, Miguel, Esnaola, Iñaki, Arguello, Henry.  2021.  Single Snapshot System for Compressive Covariance Matrix Estimation for Hyperspectral Imaging via Lenslet Array. 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA). :1—5.
Compressive Covariance Sampling (CCS) is a strategy used to recover the covariance matrix (CM) directly from compressive measurements. Several works have proven the advantages of CSS in Compressive Spectral Imaging (CSI) but most of these algorithms require multiple random projections of the scene to obtain good reconstructions. However, several low-resolution copies of the scene can be captured in a single snapshot through a lenslet array. For this reason, this paper proposes a sensing protocol and a single snapshot CCS optical architecture using a lenslet array based on the Dual Dispersive Aperture Spectral Imager(DD-CASSI) that allows the recovery of the covariance matrix with a single snapshot. In this architecture uses the lenslet array allows to obtain different projections of the image in a shot due to the special coded aperture. In order to validate the proposed approach, simulations evaluated the quality of the recovered CM and the performance recovering the spectral signatures against traditional methods. Results show that the image reconstructions using CM have PSNR values about 30 dB, and reconstructed spectrum has a spectral angle mapper (SAM) error less than 15° compared to the original spectral signatures.
Kozhemyak, Olesya A., Stukach, Oleg V..  2021.  Reducing the Root-Mean-Square Error at Signal Restoration using Discrete and Random Changes in the Sampling Rate for the Compressed Sensing Problem. 2021 International Siberian Conference on Control and Communications (SIBCON). :1—3.
The data revolution will continue in the near future and move from centralized big data to "small" datasets. This trend stimulates the emergence not only new machine learning methods but algorithms for processing data at the point of their origin. So the Compressed Sensing Problem must be investigated in some technology fields that produce the data flow for decision making in real time. In the paper, we compare the random and constant frequency deviation and highlight some circumstances where advantages of the random deviation become more obvious. Also, we propose to use the differential transformations aimed to restore a signal form by discrets of the differential spectrum of the received signal. In some cases for the investigated model, this approach has an advantage in the compress of information.
2022-07-01
Yudin, Oleksandr, Artemov, Volodymyr, Krasnorutsky, Andrii, Barannik, Vladimir, Tupitsya, Ivan, Pris, Gennady.  2021.  Creating a Mathematical Model for Estimating the Impact of Errors in the Process of Reconstruction of Non-Uniform Code Structures on the Quality of Recoverable Video Images. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). :40—45.
Existing compression coding technologies are investigated using a statistical approach. The fundamental strategies used in the process of statistical coding of video information data are analyzed. Factors that have a significant impact on the reliability and efficiency of video delivery in the process of statistical coding are analyzed. A model for estimating the impact of errors in the process of reconstruction of uneven code structures on the quality of recoverable video images is being developed.The influence of errors that occur in data transmission channels on the reliability of the reconstructed video image is investigated.
2022-06-30
Ahuja, Bharti, Doriya, Rajesh.  2021.  An Unsupervised Learning Approach for Visual Data Compression with Chaotic Encryption. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—4.
The increased demand of multimedia leads to shortage of network bandwidth and memory capacity. As a result, image compression is more significant for decreasing data redundancy, saving storage space and bandwidth. Along with the compression the next major challenge in this field is to safeguard the compressed data further from the spy which are commonly known as hackers. It is evident that the major increments in the fields like communication, wireless sensor network, data science, cloud computing and machine learning not only eases the operations of the related field but also increases the challenges as well. This paper proposes a worthy composition for image compression encryption based on unsupervised learning i.e. k-means clustering for compression with logistic chaotic map for encryption. The main advantage of the above combination is to address the problem of data storage and the security of the visual data as well. The algorithm reduces the size of the input image and also gives the larger key space for encryption. The validity of the algorithm is testified with the PSNR, MSE, SSIM and Correlation coefficient.
2022-06-09
Yan, Longchuan, Zhang, Zhaoxia, Huang, Huige, Yuan, Xiaoyu, Peng, Yuanlong, Zhang, Qingyun.  2021.  An Improved Deep Pairwise Supervised Hashing Algorithm for Fast Image Retrieval. 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA). 2:1152–1156.
In recent years, hashing algorithm has been widely researched and has made considerable progress in large-scale image retrieval tasks due to its advantages of convenient storage and fast calculation efficiency. Nowadays most researchers use deep convolutional neural networks (CNNs) to perform feature learning and hash coding learning at the same time for image retrieval and the deep hashing methods based on deep CNNs perform much better than the traditional manual feature hashing methods. But most methods are designed to handle simple binary similarity and decrease quantization error, ignoring that the features of similar images and hashing codes generated are not compact enough. In order to enhance the performance of CNNs-based hashing algorithms for large scale image retrieval, this paper proposes a new deep-supervised hashing algorithm in which a novel channel attention mechanism is added and the loss function is elaborately redesigned to generate compact binary codes. It experimentally proves that, compared with the existing hashing methods, this method has better performance on two large scale image datasets CIFAR-10 and NUS-WIDE.
2022-06-06
Agarwal, Saurabh, Jung, Ki-Hyun.  2021.  Image Forensics using Optimal Normalization in Challenging Environment. 2021 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Digital images are becoming the backbone of the social platform. To day of life of the people, the high impact of the images has raised the concern of its authenticity. Image forensics need to be done to assure the authenticity. In this paper, a novel technique is proposed for digital image forensics. The proposed technique is applied for detection of median, averaging and Gaussian filtering in the images. In the proposed method, a first image is normalized using optimal range to obtain a better statistical information. Further, difference arrays are calculated on the normalized array and a proposed thresholding is applied on the normalized arrays. In the last, co-occurrence features are extracted from the thresholding difference arrays. In experimental analysis, significant performance gain is achieved. The detection capability of the proposed method remains upstanding on small size images even with low quality JPEG compression.