Visible to the public Biblio

Found 143 results

Filters: Keyword is Image coding  [Clear All Filters]
2018-05-01
Al-Salhi, Y. E. A., Lu, S..  2017.  New Steganography Scheme to Conceal a Large Amount of Secret Messages Using an Improved-AMBTC Algorithm Based on Hybrid Adaptive Neural Networks. 2017 Ieee 3rd International Conference on Big Data Security on Cloud (Bigdatasecurity), Ieee International Conference on High Performance and Smart Computing (Hpsc), and Ieee International Conference on Intelligent Data and Security (Ids). :112–121.

The term steganography was used to conceal thesecret message into other media file. In this paper, a novel imagesteganography is proposed, based on adaptive neural networkswith recycling the Improved Absolute Moment Block TruncationCoding algorithm, and by employing the enhanced five edgedetection operators with an optimal target of the ANNS. Wepropose a new scheme of an image concealing using hybridadaptive neural networks based on I-AMBTC method by thehelp of two approaches, the relevant edge detection operators andimage compression methods. Despite that, many processes in ourscheme are used, but still the quality of concealed image lookinggood according to the HVS and PVD systems. The final simulationresults are discussed and compared with another related researchworks related to the image steganography system.

Erdem, Ö, Turan, M..  2017.  A Case Study for Automatic Detection of Steganographic Images in Network Traffic. 2017 10th International Conference on Electrical and Electronics Engineering (ELECO). :885–889.

Detection and prevention of data breaches in corporate networks is one of the most important security problems of today's world. The techniques and applications proposed for solution are not successful when attackers attempt to steal data using steganography. Steganography is the art of storing data in a file called cover, such as picture, sound and video. The concealed data cannot be directly recognized in the cover. Steganalysis is the process of revealing the presence of embedded messages in these files. There are many statistical and signature based steganalysis algorithms. In this work, the detection of steganographic images with steganalysis techniques is reviewed and a system has been developed which automatically detects steganographic images in network traffic by using open source tools.

2018-02-14
Buchmann, N., Rathgeb, C., Baier, H., Busch, C., Margraf, M..  2017.  Enhancing Breeder Document Long-Term Security Using Blockchain Technology. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:744–748.

In contrast to electronic travel documents (e.g. ePassports), the standardisation of breeder documents (e.g. birth certificates), regarding harmonisation of content and contained security features is in statu nascendi. Due to the fact that breeder documents can be used as an evidence of identity and enable the application for electronic travel documents, they pose the weakest link in the identity life cycle and represent a security gap for identity management. In this work, we present a cost efficient way to enhance the long-term security of breeder documents by utilizing blockchain technology. A conceptual architecture to enhance breeder document long-term security and an introduction of the concept's constituting system components is presented. Our investigations provide evidence that the Bitcoin blockchain is most suitable for breeder document long-term security.

2018-01-23
Dabas, N., Singh, R. P., Kher, G., Chaudhary, V..  2017.  A novel SVD and online sequential extreme learning machine based watermark method for copyright protection. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.

For the increasing use of internet, it is equally important to protect the intellectual property. And for the protection of copyright, a blind digital watermark algorithm with SVD and OSELM in the IWT domain has been proposed. During the embedding process, SVD has been applied to the coefficient blocks to get the singular values in the IWT domain. Singular values are modulated to embed the watermark in the host image. Online sequential extreme learning machine is trained to learn the relationship between the original coefficient and the corresponding watermarked version. During the extraction process, this trained OSELM is used to extract the embedded watermark logo blindly as no original host image is required during this process. The watermarked image is altered using various attacks like blurring, noise, sharpening, rotation and cropping. The experimental results show that the proposed watermarking scheme is robust against various attacks. The extracted watermark has very much similarity with the original watermark and works good to prove the ownership.

Hemanth, D. J., Popescu, D. E., Mittal, M., Maheswari, S. U..  2017.  Analysis of wavelet, ridgelet, curvelet and bandelet transforms for QR code based image steganography. 2017 14th International Conference on Engineering of Modern Electric Systems (EMES). :121–126.

Transform based image steganography methods are commonly used in security applications. However, the application of several recent transforms for image steganography remains unexplored. This paper presents bit-plane based steganography method using different transforms. In this work, the bit-plane of the transform coefficients is selected to embed the secret message. The characteristics of four transforms used in the steganography have been analyzed and the results of the four transforms are compared. This has been proven in the experimental results.

Al-Mashhadi, H. M., Abduljaleel, I. Q..  2017.  Color image encryption using chaotic maps, triangular scrambling, with DNA sequences. 2017 International Conference on Current Research in Computer Science and Information Technology (ICCIT). :93–98.

Applying security to the transmitted image is very important issues, because the transmission channel is open and can be compromised by attackers. To secure this channel from the eavesdropping attack, man in the middle attack, and so on. A new hybrid encryption image mechanism that utilize triangular scrambling, DNA encoding and chaotic map is implemented. The scheme takes a master key with a length of 320 bit, and produces a group of sub-keys with two length (32 and 128 bit) to encrypt the blocks of images, then a new triangular scrambling method is used to increase the security of the image. Many experiments are implemented using several different images. The analysis results for these experiments show that the security obtained on by using the proposed method is very suitable for securing the transmitted images. The current work has been compared with other works and the result of comparison shows that the current work is very strong against attacks.

2017-12-28
Shafee, S., Rajaei, B..  2017.  A secure steganography algorithm using compressive sensing based on HVS feature. 2017 Seventh International Conference on Emerging Security Technologies (EST). :74–78.

Steganography is the science of hiding information to send secret messages using the carrier object known as stego object. Steganographic technology is based on three principles including security, robustness and capacity. In this paper, we present a digital image hidden by using the compressive sensing technology to increase security of stego image based on human visual system features. The results represent which our proposed method provides higher security in comparison with the other presented methods. Bit Correction Rate between original secret message and extracted message is used to show the accuracy of this method.

El-Khamy, S. E., Korany, N. O., El-Sherif, M. H..  2017.  Correlation based highly secure image hiding in audio signals using wavelet decomposition and chaotic maps hopping for 5G multimedia communications. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). :1–3.

Audio Steganography is the technique of hiding any secret information behind a cover audio file without impairing its quality. Data hiding in audio signals has various applications such as secret communications and concealing data that may influence the security and safety of governments and personnel and has possible important applications in 5G communication systems. This paper proposes an efficient secure steganography scheme based on the high correlation between successive audio signals. This is similar to the case of differential pulse coding modulation technique (DPCM) where encoding uses the redundancy in sample values to encode the signals with lower bit rate. Discrete Wavelet Transform (DWT) of audio samples is used to store hidden data in the least important coefficients of Haar transform. We use the benefit of the small differences between successive samples generated from encoding of the cover audio signal wavelet coefficients to hide image data without making a remarkable change in the cover audio signal. instead of changing of actual audio samples so this doesn't perceptually degrade the audio signal and provides higher hiding capacity with lower distortion. To further increase the security of the image hiding process, the image to be hidden is divided into blocks and the bits of each block are XORed with a different random sequence of logistic maps using hopping technique. The performance of the proposed algorithm has been estimated extensively against attacks and experimental results show that the proposed method achieves good robustness and imperceptibility.

2017-12-27
Guo, L., Chen, J., Li, J..  2016.  Chaos-Based color image encryption and compression scheme using DNA complementary rule and Chinese remainder theorem. 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :208–212.

In this paper, we propose a new color image encryption and compression algorithm based on the DNA complementary rule and the Chinese remainder theorem, which combines the DNA complementary rule with quantum chaotic map. We use quantum chaotic map and DNA complementary rule to shuffle the color image and obtain the shuffled image, then Chinese remainder theorem from number theory is utilized to diffuse and compress the shuffled image simultaneously. The security analysis and experiment results show that the proposed encryption algorithm has large key space and good encryption result, it also can resist against common attacks.

2017-11-20
Li, H., He, Y., Sun, L., Cheng, X., Yu, J..  2016.  Side-channel information leakage of encrypted video stream in video surveillance systems. IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications. :1–9.

Video surveillance has been widely adopted to ensure home security in recent years. Most video encoding standards such as H.264 and MPEG-4 compress the temporal redundancy in a video stream using difference coding, which only encodes the residual image between a frame and its reference frame. Difference coding can efficiently compress a video stream, but it causes side-channel information leakage even though the video stream is encrypted, as reported in this paper. Particularly, we observe that the traffic patterns of an encrypted video stream are different when a user conducts different basic activities of daily living, which must be kept private from third parties as obliged by HIPAA regulations. We also observe that by exploiting this side-channel information leakage, attackers can readily infer a user's basic activities of daily living based on only the traffic size data of an encrypted video stream. We validate such an attack using two off-the-shelf cameras, and the results indicate that the user's basic activities of daily living can be recognized with a high accuracy.

2017-11-13
Sharma, P., Patel, D., Shah, D., Shukal, D..  2016.  Image security using Arnold method in tetrolet domain. 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC). :312–315.

The image contains a lot of visual as well as hidden information. Both, information must be secured at the time of transmission. With this motivation, a scheme is proposed based on encryption in tetrolet domain. For encryption, an iterative based Arnold transform is used in proposed methodology. The images are highly textured, which contains the authenticity of the image. For that, decryption process is performed in this way so that maximum, the edges and textures should be recovered, effectively. The suggested method has been tested on standard images and results obtained after applying suggested method are significant. A comparison is also performed with some standard existing methods to measure the effectiveness of the suggested method.

2017-03-08
Tonder, J. van, Poll, J. A. van der.  2015.  Cloud-based technologies for addressing long vehicle turnaround times at recycling mills. 2015 International Conference on Computing, Communication and Security (ICCCS). :1–8.

Transportation costs for road transport companies may be intensified by rising fuel prices, levies, traffic congestion, etc. Of particular concern to the Mpact group of companies is the long waiting times in the queues at loading and offloading points at three processing mills in the KZN (KwaZulu-Natal) province in South Africa. Following a survey among the drivers who regularly deliver at these sites, recommendations for alleviating the lengthy waiting times are put forward. On the strength of one of these recommendations, namely the innovative use of ICTs, suggestions on how cloud-based technologies may be embraced by the company are explored. In the process, the value added by a cloud-based supply chain, enterprise systems, CRM (Customer Relationship Management) and knowledge management is examined.

Sim, T., Zhang, L..  2015.  Controllable Face Privacy. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). 04:1–8.

We present the novel concept of Controllable Face Privacy. Existing methods that alter face images to conceal identity inadvertently also destroy other facial attributes such as gender, race or age. This all-or-nothing approach is too harsh. Instead, we propose a flexible method that can independently control the amount of identity alteration while keeping unchanged other facial attributes. To achieve this flexibility, we apply a subspace decomposition onto our face encoding scheme, effectively decoupling facial attributes such as gender, race, age, and identity into mutually orthogonal subspaces, which in turn enables independent control of these attributes. Our method is thus useful for nuanced face de-identification, in which only facial identity is altered, but others, such gender, race and age, are retained. These altered face images protect identity privacy, and yet allow other computer vision analyses, such as gender detection, to proceed unimpeded. Controllable Face Privacy is therefore useful for reaping the benefits of surveillance cameras while preventing privacy abuse. Our proposal also permits privacy to be applied not just to identity, but also to other facial attributes as well. Furthermore, privacy-protection mechanisms, such as k-anonymity, L-diversity, and t-closeness, may be readily incorporated into our method. Extensive experiments with a commercial facial analysis software show that our alteration method is indeed effective.

Xu, R., Naman, A. T., Mathew, R., Rüfenacht, D., Taubman, D..  2015.  Motion estimation with accurate boundaries. 2015 Picture Coding Symposium (PCS). :184–188.

This paper investigates several techniques that increase the accuracy of motion boundaries in estimated motion fields of a local dense estimation scheme. In particular, we examine two matching metrics, one is MSE in the image domain and the other one is a recently proposed multiresolution metric that has been shown to produce more accurate motion boundaries. We also examine several different edge-preserving filters. The edge-aware moving average filter, proposed in this paper, takes an input image and the result of an edge detection algorithm, and outputs an image that is smooth except at the detected edges. Compared to the adoption of edge-preserving filters, we find that matching metrics play a more important role in estimating accurate and compressible motion fields. Nevertheless, the proposed filter may provide further improvements in the accuracy of the motion boundaries. These findings can be very useful for a number of recently proposed scalable interactive video coding schemes.

Song, D., Liu, W., Ji, R., Meyer, D. A., Smith, J. R..  2015.  Top Rank Supervised Binary Coding for Visual Search. 2015 IEEE International Conference on Computer Vision (ICCV). :1922–1930.

In recent years, binary coding techniques are becoming increasingly popular because of their high efficiency in handling large-scale computer vision applications. It has been demonstrated that supervised binary coding techniques that leverage supervised information can significantly enhance the coding quality, and hence greatly benefit visual search tasks. Typically, a modern binary coding method seeks to learn a group of coding functions which compress data samples into binary codes. However, few methods pursued the coding functions such that the precision at the top of a ranking list according to Hamming distances of the generated binary codes is optimized. In this paper, we propose a novel supervised binary coding approach, namely Top Rank Supervised Binary Coding (Top-RSBC), which explicitly focuses on optimizing the precision of top positions in a Hamming-distance ranking list towards preserving the supervision information. The core idea is to train the disciplined coding functions, by which the mistakes at the top of a Hamming-distance ranking list are penalized more than those at the bottom. To solve such coding functions, we relax the original discrete optimization objective with a continuous surrogate, and derive a stochastic gradient descent to optimize the surrogate objective. To further reduce the training time cost, we also design an online learning algorithm to optimize the surrogate objective more efficiently. Empirical studies based upon three benchmark image datasets demonstrate that the proposed binary coding approach achieves superior image search accuracy over the state-of-the-arts.

2017-02-27
Sun, H., Luo, H., Wu, T. Y., Obaidat, M. S..  2015.  A PSNR-Controllable Data Hiding Algorithm Based on LSBs Substitution. 2015 IEEE Global Communications Conference (GLOBECOM). :1–7.

There are more and more systems using mobile devices to perform sensing tasks, but these increase the risk of leakage of personal privacy and data. Data hiding is one of the important ways for information security. Even though many data hiding algorithms have worked on providing more hiding capacity or higher PSNR, there are few algorithms that can control PSNR effectively while ensuring hiding capacity. In this paper, with controllable PSNR based on LSBs substitution- PSNR-Controllable Data Hiding (PCDH), we first propose a novel encoding plan for data hiding. In PCDH, we use the remainder algorithm to calculate the hidden information, and hide the secret information in the last x LSBs of every pixel. Theoretical proof shows that this method can control the variation of stego image from cover image, and control PSNR by adjusting parameters in the remainder calculation. Then, we design the encoding and decoding algorithms with low computation complexity. Experimental results show that PCDH can control the PSNR in a given range while ensuring high hiding capacity. In addition, it can resist well some steganalysis. Compared to other algorithms, PCDH achieves better tradeoff among PSNR, hiding capacity, and computation complexity.

2017-02-21
S. Lohit, K. Kulkarni, P. Turaga, J. Wang, A. C. Sankaranarayanan.  2015.  "Reconstruction-free inference on compressive measurements". 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :16-24.

Spatial-multiplexing cameras have emerged as a promising alternative to classical imaging devices, often enabling acquisition of `more for less'. One popular architecture for spatial multiplexing is the single-pixel camera (SPC), which acquires coded measurements of the scene with pseudo-random spatial masks. Significant theoretical developments over the past few years provide a means for reconstruction of the original imagery from coded measurements at sub-Nyquist sampling rates. Yet, accurate reconstruction generally requires high measurement rates and high signal-to-noise ratios. In this paper, we enquire if one can perform high-level visual inference problems (e.g. face recognition or action recognition) from compressive cameras without the need for image reconstruction. This is an interesting question since in many practical scenarios, our goals extend beyond image reconstruction. However, most inference tasks often require non-linear features and it is not clear how to extract such features directly from compressed measurements. In this paper, we show that one can extract nontrivial correlational features directly without reconstruction of the imagery. As a specific example, we consider the problem of face recognition beyond the visible spectrum e.g in the short-wave infra-red region (SWIR) - where pixels are expensive. We base our framework on smashed filters which suggests that inner-products between high-dimensional signals can be computed in the compressive domain to a high degree of accuracy. We collect a new face image dataset of 30 subjects, obtained using an SPC. Using face recognition as an example, we show that one can indeed perform reconstruction-free inference with a very small loss of accuracy at very high compression ratios of 100 and more.

A. Pramanik, S. P. Maity.  2015.  "DPCM-quantized block-based compressed sensing of images using Robbins Monro approach". 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). :18-21.

Compressed Sensing or Compressive Sampling is the process of signal reconstruction from the samples obtained at a rate far below the Nyquist rate. In this work, Differential Pulse Coded Modulation (DPCM) is coupled with Block Based Compressed Sensing (CS) reconstruction with Robbins Monro (RM) approach. RM is a parametric iterative CS reconstruction technique. In this work extensive simulation is done to report that RM gives better performance than the existing DPCM Block Based Smoothed Projected Landweber (SPL) reconstruction technique. The noise seen in Block SPL algorithm is not much evident in this non-parametric approach. To achieve further compression of data, Lempel-Ziv-Welch channel coding technique is proposed.

H. Kiragu, G. Kamucha, E. Mwangi.  2015.  "A fast procedure for acquisition and reconstruction of magnetic resonance images using compressive sampling". AFRICON 2015. :1-5.

This paper proposes a fast and robust procedure for sensing and reconstruction of sparse or compressible magnetic resonance images based on the compressive sampling theory. The algorithm starts with incoherent undersampling of the k-space data of the image using a random matrix. The undersampled data is sparsified using Haar transformation. The Haar transform coefficients of the k-space data are then reconstructed using the orthogonal matching Pursuit algorithm. The reconstructed coefficients are inverse transformed into k-space data and then into the image in spatial domain. Finally, a median filter is used to suppress the recovery noise artifacts. Experimental results show that the proposed procedure greatly reduces the image data acquisition time without significantly reducing the image quality. The results also show that the error in the reconstructed image is reduced by median filtering.

2017-02-14
P. Das, S. C. Kushwaha, M. Chakraborty.  2015.  "Multiple embedding secret key image steganography using LSB substitution and Arnold Transform". 2015 2nd International Conference on Electronics and Communication Systems (ICECS). :845-849.

Cryptography and steganography are the two major fields available for data security. While cryptography is a technique in which the information is scrambled in an unintelligent gibberish fashion during transmission, steganography focuses on concealing the existence of the information. Combining both domains gives a higher level of security in which even if the use of covert channel is revealed, the true information will not be exposed. This paper focuses on concealing multiple secret images in a single 24-bit cover image using LSB substitution based image steganography. Each secret image is encrypted before hiding in the cover image using Arnold Transform. Results reveal that the proposed method successfully secures the high capacity data keeping the visual quality of transmitted image satisfactory.

S. Pund-Dange, C. G. Desai.  2015.  "Secured data communication system using RSA with mersenne primes and Steganography". 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom). :1306-1310.

To add multiple layers of security our present work proposes a method for integrating together cryptography and Steganography for secure communication using an image file. We have used here combination of cryptography and steganography that can hide a text in an image in such a way so as to prevent any possible suspicion of having a hidden text, after RSA cipher. It offers privacy and high security through the communication channel.

S. Parimi, A. SaiKrishna, N. R. Kumar, N. R. Raajan.  2015.  "An imperceptible watermarking technique for copyright content using discrete cosine transformation". 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]. :1-5.

This paper is nominated for an image protection scheme in the area of government sectors based on discrete cosine transformation with digital watermarking scheme. A cover image has broken down into 8 × 8 non overlapped blocks and transformed from spatial domain into frequency domain. Apply DCT version II of the DCT family to each sub block of the original image. Then embed the watermarking image into the sub blocks. Apply IDCT of version II to send the image through communication channel with watermarked image. To recover the watermarked image, apply DCT and watermarking formula to the sub blocks. The experimental results show that the proposed watermarking procedure gives high security and watermarked image retrieved successfully.

F. Hassan, J. L. Magalini, V. de Campos Pentea, R. A. Santos.  2015.  "A project-based multi-disciplinary elective on digital data processing techniques". 2015 IEEE Frontiers in Education Conference (FIE). :1-7.

Todays' era of internet-of-things, cloud computing and big data centers calls for more fresh graduates with expertise in digital data processing techniques such as compression, encryption and error correcting codes. This paper describes a project-based elective that covers these three main digital data processing techniques and can be offered to three different undergraduate majors electrical and computer engineering and computer science. The course has been offered successfully for three years. Registration statistics show equal interest from the three different majors. Assessment data show that students have successfully completed the different course outcomes. Students' feedback show that students appreciate the knowledge they attain from this elective and suggest that the workload for this course in relation to other courses of equal credit is as expected.

P. Dahake, S. Nimbhorkar.  2015.  "Hybrid cryptosystem for maintaining image integrity using biometric fingerprint". 2015 International Conference on Pervasive Computing (ICPC). :1-5.

Integrity of image data plays an important role in data communication. Image data contain confidential information so it is very important to protect data from intruder. When data is transmitted through the network, there may be possibility that data may be get lost or damaged. Existing system does not provide all functionality for securing image during transmission. i.e image compression, encryption and user authentication. In this paper hybrid cryptosystem is proposed in which biometric fingerprint is used for key generation which is further useful for encryption purpose. Secret fragment visible mosaic image method is used for secure transmission of image. For reducing the size of image lossless compression technique is used which leads to the fast transmission of image data through transmission channel. The biometric fingerprint is useful for authentication purpose. Biometric method is more secure method of authentication because it requires physical presence of human being and it is untraceable.

K. Liu, M. Li, X. Li.  2015.  "Hiding Media Data via Shaders: Enabling Private Sharing in the Clouds". 2015 IEEE 8th International Conference on Cloud Computing. :122-129.

In the era of Cloud and Social Networks, mobile devices exhibit much more powerful abilities for big media data storage and sharing. However, many users are still reluctant to share/store their data via clouds due to the potential leakage of confidential or private information. Although some cloud services provide storage encryption and access protection, privacy risks are still high since the protection is not always adequately conducted from end-to-end. Most customers are aware of the danger of letting data control out of their hands, e.g., Storing them to YouTube, Flickr, Facebook, Google+. Because of substantial practical and business needs, existing cloud services are restricted to the desired formats, e.g., Video and photo, without allowing arbitrary encrypted data. In this paper, we propose a format-compliant end-to-end privacy-preserving scheme for media sharing/storage issues with considerations for big data, clouds, and mobility. To realize efficient encryption for big media data, we jointly achieve format-compliant, compression-independent and correlation-preserving via multi-channel chained solutions under the guideline of Markov cipher. The encryption and decryption process is integrated into an image/video filter via GPU Shader for display-to-display full encryption. The proposed scheme makes big media data sharing/storage safer and easier in the clouds.