Biblio
Enterprise networks are increasingly moving towards Software Defined Networking, which is becoming a major trend in the networking arena. With the increased popularity of SDN, there is a greater need for security measures for protecting the enterprise networks. This paper focuses on the design and implementation of an integrated security architecture for SDN based enterprise networks. The integrated security architecture uses a policy-based approach to coordinate different security mechanisms to detect and counteract a range of security attacks in the SDN. A distinguishing characteristic of the proposed architecture is its ability to deal with dynamic changes in the security attacks as well as changes in trust associated with the network devices in the infrastructure. The adaptability of the proposed architecture to dynamic changes is achieved by having feedback between the various security components/mechanisms in the architecture and managing them using a dynamic policy framework. The paper describes the prototype implementation of the proposed architecture and presents security and performance analysis for different attack scenarios. We believe that the proposed integrated security architecture provides a significant step towards achieving a secure SDN for enterprises.
The usage of robot is rapidly growth in our society. The communication link and applications connect the robots to their clients or users. This communication link and applications are normally connected through some kind of network connections. This network system is amenable of being attached and vulnerable to the security threats. It is a critical part for ensuring security and privacy for robotic platforms. The paper, also discusses about several cyber-physical security threats that are only for robotic platforms. The peer to peer applications use in the robotic platforms for threats target integrity, availability and confidential security purposes. A Remote Administration Tool (RAT) was introduced for specific security attacks. An impact oriented process was performed for analyzing the assessment outcomes of the attacks. Tests and experiments of attacks were performed in simulation environment which was based on Gazbo Turtlebot simulator and physically on the robot. A software tool was used for simulating, debugging and experimenting on ROS platform. Integrity attacks performed for modifying commands and manipulated the robot behavior. Availability attacks were affected for Denial-of-Service (DoS) and the robot was not listened to Turtlebot commands. Integrity and availability attacks resulted sensitive information on the robot.
Internet of Things (IoT), commonly referred to a physical object connected to network, refers to a paradigm in information technology integrating the advances in terms of sensing, computation and communication to improve the service in daily life. This physical object consists of sensors and actuators that are capable of changing the data to offer the improvement of service quality in daily life. When a data exchange occurs, the exchanged data become sensitive; making them vulnerable to any security attacks, one of which, for example, is Sybil attack. This paper aimed to propose a method of trustworthiness management based upon the authentication and trust value. Once performing the test on three scenarios, the system was found to be capable of detecting the Sybil attack rapidly and accurately. The average of time to detect the Sybil attacks was 9.3287 seconds and the average of time required to detect the intruder object in the system was 18.1029 seconds. The accuracy resulted in each scenario was found 100% indicating that the detection by the system to Sybil attack was 100% accurate.
Security of Internet of vehicles (IoV) is critical as it promises to provide with safer and secure driving. IoV relies on VANETs which is based on V2V (Vehicle to Vehicle) communication. The vehicles are integrated with various sensors and embedded systems allowing them to gather data related to the situation on the road. The collected data can be information associated with a car accident, the congested highway ahead, parked car, etc. This information exchanged with other neighboring vehicles on the road to promote safe driving. IoV networks are vulnerable to various security attacks. The V2V communication comprises specific vulnerabilities which can be manipulated by attackers to compromise the whole network. In this paper, we concentrate on intrusion detection in IoV and propose a multilayer perceptron (MLP) neural network to detect intruders or attackers on an IoV network. Results are in the form of prediction, classification reports, and confusion matrix. A thorough simulation study demonstrates the effectiveness of the new MLP-based intrusion detection system.
Smart contracts have been widely used on Ethereum to enable business services across various application domains. However, they are prone to different forms of security attacks due to the dynamic and non-deterministic blockchain runtime environment. In this work, we highlighted a general miner-side type of exploit, called concurrency exploit, which attacks smart contracts via generating malicious transaction sequences. Moreover, we designed a systematic algorithm to automatically detect such exploits. In our preliminary evaluation, our approach managed to identify real vulnerabilities that cannot be detected by other tools in the literature.
This paper provides hardware-independent authentication named as Intelligent Authentication Scheme, which rectifies the design weaknesses that may be exploited by various security attacks. The Intelligent Authentication Scheme protects against various types of security attacks such as password-guessing attack, replay attack, streaming bots attack (denial of service), keylogger, screenlogger and phishing attack. Besides reducing the overall cost, it also balances both security and usability. It is a unique authentication scheme.
In today's IIoT world, most of the IoT platform providers like Microsoft, Amazon and Google are focused towards connecting devices and extract data from the devices and send the data to the Cloud for analytics. Only there are few companies concentrating on Security measures implemented on Edge Node. Gartner estimates that by 2020, more than 25 percent of all enterprise attackers will make use of the Industrial IoT. As Cyber Security Threat is getting more important, it is essential to ensure protection of data both at rest and at motion. The reflex of Cyber Security in the Industrial IoT Domain is much more severe when compared to the Consumer IoT Segment. The new bottleneck in this are security services which employ computationally intensive software operations and system services [1]. Resilient services consume considerable resources in a design. When such measures are added to thwart security attacks, the resource requirements grow even more demanding. Since the standard IIoT Gateways and other sub devices are resource constrained in nature the conventional design for security services will not be applicable in this case. This paper proposes an intelligent architectural paradigm for the Constrained IIoT Gateways that can efficiently identify the Cyber-Attacks in the Industrial IoT domain.
Mobile Adhoc Network (MANET) are the networks where network nodes uses wireless links to transfer information from one node to another without making use of existing infrastructure. There is no node in the network to control and coordinate establishment of connections between the network nodes. Hence the network nodes performs dual function of both node as well as router. Due to dynamically changing network scenarios, absence of centralization and lack of resources, MANETs have a threat of large number of security attacks. Hence security attacks need to be evaluated in order to find effective methods to avoid or remove them. In this paper malicious behavior of Blackhole attack and Rushing attack is studied and analyzed for QoS metrics.
Network-on-Chip (NoC) is the communication platform of the data among the processing cores in Multiprocessors System-on-Chip (MPSoC). NoC has become a target to security attacks and by outsourcing design, it can be infected with a malicious Hardware Trojan (HT) to degrades the system performance or leaves a back door for sensitive information leaking. In this paper, we proposed a HT model that applies a denial of service attack by deliberately discarding the data packets that are passing through the infected node creating a black hole in the NoC. It is known as Black Hole Router (BHR) attack. We studied the effect of the BHR attack on the NoC. The power and area overhead of the BHR are analyzed. We studied the effect of the locations of BHRs and their distribution in the network as well. The malicious nodes has very small area and power overhead, 1.98% and 0.74% respectively, with a very strong violent attack.
Routing protocols in wireless sensor network are vulnerable to various malicious security attacks that can degrade network performance and lifetime. This becomes more important in cluster routing protocols that is composed of multiple node and cluster head, such as low energy adaptive clustering hierarchy (LEACH) protocol. Namely, if an attack succeeds in failing the cluster head, then the entire set of nodes fail. Therefore, it is necessary to develop robust recovery schemes to overcome security attacks and recover packets at short times. Hence this paper proposes a detection and recovery scheme for selective forwarding attacks in wireless sensor networks using LEACH protocol. The proposed solution features near-instantaneous recovery times, without the requirement for feedback or retransmissions once an attack occurs.
Security attacks against Internet of Things (IoT) are on the rise and they lead to drastic consequences. Data confidentiality is typically based on a strong symmetric-key algorithm to guard against confidentiality attacks. However, there is a need to design an efficient lightweight cipher scheme for a number of applications for IoT systems. Recently, a set of lightweight cryptographic algorithms have been presented and they are based on the dynamic key approach, requiring a small number of rounds to minimize the computation and resource overhead, without degrading the security level. This paper follows this logic and provides a new flexible lightweight cipher, with or without chaining operation mode, with a simple round function and a dynamic key for each input message. Consequently, the proposed cipher scheme can be utilized for real-time applications and/or devices with limited resources such as Multimedia Internet of Things (MIoT) systems. The importance of the proposed solution is that it produces dynamic cryptographic primitives and it performs the mixing of selected blocks in a dynamic pseudo-random manner. Accordingly, different plaintext messages are encrypted differently, and the avalanche effect is also preserved. Finally, security and performance analysis are presented to validate the efficiency and robustness of the proposed cipher variants.
Network-on-Chip (NoC) architecture is the communication heart of the processing cores in Multiprocessors System-on-Chip (MPSoC), where messages are routed from a source to a destination through intermediate nodes. Therefore, NoC has become a target to security attacks. By experiencing outsourcing design, NoC can be infected with a malicious Hardware Trojans (HTs) which potentially degrade the system performance or leave a backdoor for secret key leaking. In this paper, we propose a HT model that applies a denial of service attack by misrouting the packets, which causes deadlock and consequently degrading the NoC performance. We present a secure routing algorithm that provides a runtime HT detection and avoiding scheme. Results show that our proposed model has negligible overhead in area and power, 0.4% and 0.6%, respectively.