Visible to the public Biblio

Filters: Keyword is malicious modifications  [Clear All Filters]
2020-07-16
Lingasubramanian, Karthikeyan, Kumar, Ranveer, Gunti, Nagendra Babu, Morris, Thomas.  2018.  Study of hardware trojans based security vulnerabilities in cyber physical systems. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1—6.

The dependability of Cyber Physical Systems (CPS) solely lies in the secure and reliable functionality of their backbone, the computing platform. Security of this platform is not only threatened by the vulnerabilities in the software peripherals, but also by the vulnerabilities in the hardware internals. Such threats can arise from malicious modifications to the integrated circuits (IC) based computing hardware, which can disable the system, leak information or produce malfunctions. Such modifications to computing hardware are made possible by the globalization of the IC industry, where a computing chip can be manufactured anywhere in the world. In the complex computing environment of CPS such modifications can be stealthier and undetectable. Under such circumstances, design of these malicious modifications, and eventually their detection, will be tied to the functionality and operation of the CPS. So it is imperative to address such threats by incorporating security awareness in the computing hardware design in a comprehensive manner taking the entire system into consideration. In this paper, we present a study in the influence of hardware Trojans on closed-loop systems, which form the basis of CPS, and establish threat models. Using these models, we perform a case study on a critical CPS application, gas pipeline based SCADA system. Through this process, we establish a completely virtual simulation platform along with a hardware-in-the-loop based simulation platform for implementation and testing.

2020-03-27
Romagnoli, Raffaele, Krogh, Bruce H., Sinopoli, Bruno.  2019.  Design of Software Rejuvenation for CPS Security Using Invariant Sets. 2019 American Control Conference (ACC). :3740–3745.

Software rejuvenation has been proposed as a strategy to protect cyber-physical systems (CSPs) against unanticipated and undetectable cyber attacks. The basic idea is to refresh the system periodically with a secure and trusted copy of the online software so as to eliminate all effects of malicious modifications to the run-time code and data. This paper considers software rejuvenation design from a control-theoretic perspective. Invariant sets for the Lyapunov function for the safety controller are used to derive bounds on the time that the CPS can operate in mission control mode before the software must be refreshed. With these results it can be guaranteed that the CPS will remain safe under cyber attacks against the run-time system. The approach is illustrated using simulation of the nonlinear dynamics of a quadrotor system. The concluding section discusses directions for further research.

2020-02-26
Shi, Qihang, Vashistha, Nidish, Lu, Hangwei, Shen, Haoting, Tehranipoor, Bahar, Woodard, Damon L, Asadizanjani, Navid.  2019.  Golden Gates: A New Hybrid Approach for Rapid Hardware Trojan Detection Using Testing and Imaging. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :61–71.

Hardware Trojans are malicious modifications on integrated circuits (IC), which pose a grave threat to the security of modern military and commercial systems. Existing methods of detecting hardware Trojans are plagued by the inability of detecting all Trojans, reliance on golden chip that might not be available, high time cost, and low accuracy. In this paper, we present Golden Gates, a novel detection method designed to achieve a comparable level of accuracy to full reverse engineering, yet paying only a fraction of its cost in time. The proposed method inserts golden gate circuits (GGC) to achieve superlative accuracy in the classification of all existing gate footprints using rapid scanning electron microscopy (SEM) and backside ultra thinning. Possible attacks against GGC as well as malicious modifications on interconnect layers are discussed and addressed with secure built-in exhaustive test infrastructure. Evaluation with real SEM images demonstrate high classification accuracy and resistance to attacks of the proposed technique.

2019-03-15
Wang, C., Zhao, S., Wang, X., Luo, M., Yang, M..  2018.  A Neural Network Trojan Detection Method Based on Particle Swarm Optimization. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). :1-3.

Hardware Trojans (HTs) are malicious modifications of the original circuits intended to leak information or cause malfunction. Based on the Side Channel Analysis (SCA) technology, a set of hardware Trojan detection platform is designed for RTL circuits on the basis of HSPICE power consumption simulation. Principal Component Analysis (PCA) algorithm is used to reduce the dimension of power consumption data. An intelligent neural networks (NN) algorithm based on Particle Swarm Optimization (PSO) is introduced to achieve HTs recognition. Experimental results show that the detection accuracy of PSO NN method is much better than traditional BP NN method.

Martin, H., Entrena, L., Dupuis, S., Natale, G. Di.  2018.  A Novel Use of Approximate Circuits to Thwart Hardware Trojan Insertion and Provide Obfuscation. 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS). :41-42.

Hardware Trojans have become in the last decade a major threat in the Integrated Circuit industry. Many techniques have been proposed in the literature aiming at detecting such malicious modifications in fabricated ICs. For the most critical circuits, prevention methods are also of interest. The goal of such methods is to prevent the insertion of a Hardware Trojan thanks to ad-hoc design rules. In this paper, we present a novel prevention technique based on approximation. An approximate logic circuit is a circuit that performs a possibly different but closely related logic function, so that it can be used for error detection or error masking where it overlaps with the original circuit. We will show how this technique can successfully detect the presence of Hardware Trojans, with a solution that has a smaller impact than triplication.