Biblio
Aiming at the problems of poor stability and low accuracy of current communication data informatization processing methods, this paper proposes a research on nonlinear frequency hopping communication data informatization under the framework of big data security evaluation. By adding a frequency hopping mediation module to the frequency hopping communication safety evaluation framework, the communication interference information is discretely processed, and the data parameters of the nonlinear frequency hopping communication data are corrected and converted by combining a fast clustering analysis algorithm, so that the informatization processing of the nonlinear frequency hopping communication data under the big data safety evaluation framework is completed. Finally, experiments prove that the research on data informatization of nonlinear frequency hopping communication under the framework of big data security evaluation could effectively improve the accuracy and stability.
Wireless sensor network operate on the basic underlying assumption that all participating nodes fully collaborate in self-organizing functions. However, performing network functions consumes energy and other resources. Therefore, some network nodes may decide against cooperating with others. Node misbehavior due to selfish or malicious reasons or faulty nodes can significantly degrade the performance of mobile ad-hoc networks. To cope with misbehavior in such self-organized networks, nodes need to be able to automatically adapt their strategy to changing levels of cooperation. The problem of identifying and isolating misbehaving nodes that refuses to forward packets in multi-hop ad hoc networks. a comprehensive system called Audit-based Misbehavior Detection (AMD) that effectively and efficiently isolates both continuous and selective packet droppers. The AMD system integrates reputation management, trustworthy route discovery, and identification of misbehaving nodes based on behavioral audits. AMD evaluates node behavior on a per-packet basis, without employing energy-expensive overhearing techniques or intensive acknowledgment schemes. AMD can detect selective dropping attacks even if end-to-end traffic is encrypted and can be applied to multi-channel networks.
Distributed storage systems and caching systems are becoming widespread, and this motivates the increasing interest on assessing their achievable performance in terms of reliability for legitimate users and security against malicious users. While the assessment of reliability takes benefit of the availability of well established metrics and tools, assessing security is more challenging. The classical cryptographic approach aims at estimating the computational effort for an attacker to break the system, and ensuring that it is far above any feasible amount. This has the limitation of depending on attack algorithms and advances in computing power. The information-theoretic approach instead exploits capacity measures to achieve unconditional security against attackers, but often does not provide practical recipes to reach such a condition. We propose a mixed cryptographic/information-theoretic approach with a twofold goal: estimating the levels of information-theoretic security and defining a practical scheme able to achieve them. In order to find optimal choices of the parameters of the proposed scheme, we exploit an effective probabilistic model checker, which allows us to overcome several limitations of more conventional methods.