Hiraga, Hiroki, Nishi, Hiroaki.
2021.
Network Transparent Decrypting of Cryptographic Stream Considering Service Provision at the Edge. 2021 IEEE 19th International Conference on Industrial Informatics (INDIN). :1–6.
The spread of Internet of Things (IoT) devices and high-speed communications, such as 5G, makes their services rich and diverse. Therefore, it is desirable to perform functions of rich services transparently and use edge computing environments flexibly at intermediate locations on the Internet, from the perspective of a network system. When this type of edge computing environment is achieved, IoT nodes as end devices of the Internet can fully utilize edge computing systems and cloud systems without any change, such as switching destination IP addresses between them, along with protocol maintenance for the switching. However, when the data transfer in the communication is encrypted, a decryption method is necessary at the edge, to realize these transparent edge services. In this study, a transparent common key-exchanging method with cloud service has been proposed as the destination node of a communication pair, to transparently decrypt a secure sockets layer-encrypted communication stream at the edge area. This enables end devices to be free from any changes and updates to communicate with the destination node.
Yue, Ren, Miao, Chen, Bo, Li, Xueyuan, Wang, Xingzhi, Li, Zijun, Liao.
2021.
Research and Implementation of Efficient DPI Engine Base on DPDK. 2021 China Automation Congress (CAC). :3868–3873.
With the rapid development of the Internet, network traffic is becoming more complex and diverse. At the same time, malicious traffic is growing. This seriously threatens the security of networks and information. However, the current DPI (Deep Packet Inspect) engine based on x86 architecture is slow in monitoring speed, which cannot meet the needs. Generally, two factors affect the detection rate: CPU and memory; The efficiency of data packet acquisition, and multi regular expression matching. Under these circumstances, this paper presents an efficient implementation of the DPI engine based on a generic x86 platform. DPDK is used as the platform of network data packets acquisition and processing. Using the multi-queue of the NIC (network interface controller) and the customized symmetric RSS key, the network traffic is divided and reorganized in the form of conversation. The core of traffic identification is hyperscan, which uses a flow pattern to match the packets load of a single conversation efficiently. It greatly reduces memory requirements. The method makes full use of the system resources and takes into account the advantages of high efficiency of hardware implementation. And it has a remarkable improvement in the efficiency of recognition.
Nawaz, Alia, Naeem, Tariq, Tayyab, Muhammad.
2021.
Application Profiling From Encrypted Traffic. 2021 International Conference on Cyber Warfare and Security (ICCWS). :1–7.
Everyday millions of people use Internet for various purposes including information access, communication, business, education, entertainment and more. As a result, huge amount of information is exchanged between billions of connected devices. This information can be encapsulated in different types of data packets. This information is also referred to as network traffic. The traffic analysis is a challenging task when the traffic is encrypted and the contents are not readable. So complex algorithms required to deduce the information and form patterns for traffic analysis. Many of currently available techniques rely on application specific attribute analysis, deep packet inspection (DPI) or content-based analysis that become ineffective on encrypted traffic. The article will focused on analysis techniques for encrypted traffic that are adaptive to address the evolving nature and increasing volume of network traffic. The proposed solution solution is less dependent on application and protocol specific parameters so that it can adapt to new types of applications and protocols. Our results shows that processing required for traffic analysis need to be in acceptable limits to ensure applicability in real-time applications without compromising performance.
Rescio, Tommaso, Favale, Thomas, Soro, Francesca, Mellia, Marco, Drago, Idilio.
2021.
DPI Solutions in Practice: Benchmark and Comparison. 2021 IEEE Security and Privacy Workshops (SPW). :37–42.
Having a clear insight on the protocols carrying traffic is crucial for network applications. Deep Packet Inspection (DPI) has been a key technique to provide visibility into traffic. DPI has proven effective in various scenarios, and indeed several open source DPI solutions are maintained by the community. Yet, these solutions provide different classifications, and it is hard to establish a common ground truth. Independent works approaching the question of the quality of DPI are already aged and rely on limited datasets. Here, we test if open source DPI solutions can provide useful information in practical scenarios, e.g., supporting security applications. We provide an evaluation of the performance of four open-source DPI solutions, namely nDPI, Libprotoident, Tstat and Zeek. We use datasets covering various traffic scenarios, including operational networks, IoT scenarios and malware. As no ground truth is available, we study the consistency of classification across the solutions, investigating rootcauses of conflicts. Important for on-line security applications, we check whether DPI solutions provide reliable classification with a limited number of packets per flow. All in all, we confirm that DPI solutions still perform satisfactorily for well-known protocols. They however struggle with some P2P traffic and security scenarios (e.g., with malware traffic). All tested solutions reach a final classification after observing few packets with payload, showing adequacy for on-line applications.
Jiang, Xiaoyu, Qiu, Tie, Zhou, Xiaobo, Zhang, Bin, Sun, Ximin, Chi, Jiancheng.
2021.
A Text Similarity-based Protocol Parsing Scheme for Industrial Internet of Things. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :781–787.
Protocol parsing is to discern and analyze packets' transmission fields, which plays an essential role in industrial security monitoring. The existing schemes parsing industrial protocols universally have problems, such as the limited parsing protocols, poor scalability, and high preliminary information requirements. This paper proposes a text similarity-based protocol parsing scheme (TPP) to identify and parse protocols for Industrial Internet of Things. TPP works in two stages, template generation and protocol parsing. In the template generation stage, TPP extracts protocol templates from protocol data packets by the cluster center extraction algorithm. The protocol templates will update continuously with the increase of the parsing packets' protocol types and quantities. In the protocol parsing phase, the protocol data packet will match the template according to the similarity measurement rules to identify and parse the fields of protocols. The similarity measurement method comprehensively measures the similarity between messages in terms of character position, sequence, and continuity to improve protocol parsing accuracy. We have implemented TPP in a smart industrial gateway and parsed more than 30 industrial protocols, including POWERLINK, DNP3, S7comm, Modbus-TCP, etc. We evaluate the performance of TPP by comparing it with the popular protocol analysis tool Netzob. The experimental results show that the accuracy of TPP is more than 20% higher than Netzob on average in industrial protocol identification and parsing.
Dijk, Allard.
2021.
Detection of Advanced Persistent Threats using Artificial Intelligence for Deep Packet Inspection. 2021 IEEE International Conference on Big Data (Big Data). :2092–2097.
Advanced persistent threats (APT’s) are stealthy threat actors with the skills to gain covert control of the computer network for an extended period of time. They are the highest cyber attack risk factor for large companies and states. A successful attack via an APT can cost millions of dollars, can disrupt civil life and has the capabilities to do physical damage. APT groups are typically state-sponsored and are considered the most effective and skilled cyber attackers. Attacks of APT’s are executed in several stages as pointed out in the Lockheed Martin cyber kill chain (CKC). Each of these APT stages can potentially be identified as patterns in network traffic. Using the "APT-2020" dataset, that compiles the characteristics and stages of an APT, we carried out experiments on the detection of anomalous traffic for all APT stages. We compare several artificial intelligence models, like a stacked auto encoder, a recurrent neural network and a one class state vector machine and show significant improvements on detection in the data exfiltration stage. This dataset is the first to have a data exfiltration stage included to experiment on. According to APT-2020’s authors current models have the biggest challenge specific to this stage. We introduce a method to successfully detect data exfiltration by analyzing the payload of the network traffic flow. This flow based deep packet inspection approach improves detection compared to other state of the art methods.
Mahendra, Lagineni, Kumar, R.K. Senthil, Hareesh, Reddi, Bindhumadhava, B.S., Kalluri, Rajesh.
2021.
Deep Security Scanner for Industrial Control Systems. TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON). :447–452.
with the continuous growing threat of cyber terrorism, the vulnerability of the industrial control systems (ICS) is the most common subject for security researchers now. Attacks on ICS systems keep increasing and their impact leads to human safety issues, equipment damage, system down, unusual output, loss of visibility and control, and various other catastrophic failures. Many of the industrial control systems are relatively insecure with chronic and pervasive vulnerabilities. Modbus-Tcpis one of the widely used communication protocols in the ICS/ Supervisory control and data acquisition (SCADA) system to transmit signals from instrumentation and control devices to the main controller of the control center. Modbus is a plain text protocol without any built-in security mechanisms, and Modbus is a standard communication protocol, widely used in critical infrastructure applications such as power systems, water, oil & gas, etc.. This paper proposes a passive security solution called Deep-security-scanner (DSS) tailored to Modbus-Tcpcommunication based Industrial control system (ICS). DSS solution detects attacks on Modbus-TcpIcs networks in a passive manner without disturbing the availability requirements of the system.
Pacífico, Racyus D. G., Castanho, Matheus S., Vieira, Luiz F. M., Vieira, Marcos A. M., Duarte, Lucas F. S., Nacif, José A. M..
2021.
Application Layer Packet Classifier in Hardware. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :515–522.
Traffic classification is fundamental to network operators to manage the network better. L7 classification and Deep Packet Inspection (DPI) using regular expressions are vital components to provide application-aware traffic classification. Nevertheless, there are open challenges yet, such as programmability and performance combined with security. In this paper, we introduce eBPFlow, a fast application layer packet classifier in hardware. eBPFlow allows packet classification with DPI on packet headers and payloads in runtime. It enables programming of regular expressions (RegEx) and security protocols using eBPF (extended Berkeley Packet Filter). We built eBPFlow on NetFPGA SUME 40 Gbps and created several application classifiers. The tests were performed in a physical testbed. Our results show that eBPFlow supports packet classification on the application layer with line rate. It only consumes 22 W.
Mubarak, Sinil, Habaebi, Mohamed Hadi, Islam, Md Rafiqul, Khan, Sheroz.
2021.
ICS Cyber Attack Detection with Ensemble Machine Learning and DPI using Cyber-kit Datasets. 2021 8th International Conference on Computer and Communication Engineering (ICCCE). :349–354.
Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.
Deri, Luca, Fusco, Francesco.
2021.
Using Deep Packet Inspection in CyberTraffic Analysis. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :89–94.
In recent years we have observed an escalation of cybersecurity attacks, which are becoming more sophisticated and harder to detect as they use more advanced evasion techniques and encrypted communications. The research community has often proposed the use of machine learning techniques to overcome the limitations of traditional cybersecurity approaches based on rules and signatures, which are hard to maintain, require constant updates, and do not solve the problems of zero-day attacks. Unfortunately, machine learning is not the holy grail of cybersecurity: machine learning-based techniques are hard to develop due to the lack of annotated data, are often computationally intensive, they can be target of hard to detect adversarial attacks, and more importantly are often not able to provide explanations for the predicted outcomes. In this paper, we describe a novel approach to cybersecurity detection leveraging on the concept of security score. Our approach demonstrates that extracting signals via deep packet inspections paves the way for efficient detection using traffic analysis. This work has been validated against various traffic datasets containing network attacks, showing that it can effectively detect network threats without the complexity of machine learning-based solutions.